Search results

1 – 10 of 441
Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6067

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 2000

A. Savini

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community…

1146

Abstract

Gives introductory remarks about chapter 1 of this group of 31 papers, from ISEF 1999 Proceedings, in the methodologies for field analysis, in the electromagnetic community. Observes that computer package implementation theory contributes to clarification. Discusses the areas covered by some of the papers ‐ such as artificial intelligence using fuzzy logic. Includes applications such as permanent magnets and looks at eddy current problems. States the finite element method is currently the most popular method used for field computation. Closes by pointing out the amalgam of topics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 December 2021

Yongliang Wang and Jianhui Wang

This study presents a novel hp-version adaptive finite element method (FEM) to investigate the high-precision eigensolutions of the free vibration of moderately thick circular…

Abstract

Purpose

This study presents a novel hp-version adaptive finite element method (FEM) to investigate the high-precision eigensolutions of the free vibration of moderately thick circular cylindrical shells, involving the issues of variable geometrical factors, such as the thickness, circumferential wave number, radius and length.

Design/methodology/approach

An hp-version adaptive finite element (FE) algorithm is proposed for determining the eigensolutions of the free vibration of moderately thick circular cylindrical shells via error homogenisation and higher-order interpolation. This algorithm first develops the established h-version mesh refinement method for detecting the non-uniform distributed optimised meshes, where the error estimation and element subdivision approaches based on the superconvergent patch recovery displacement method are introduced to obtain high-precision solutions. The errors in the vibration mode solutions in the global space domain are homogenised and approximately the same. Subsequently, on the refined meshes, the algorithm uses higher-order shape functions for the interpolation of trial displacement functions to reduce the errors quickly, until the solution meets a pre-specified error tolerance condition. In this algorithm, the non-uniform mesh generation and higher-order interpolation of shape functions are suitable for addressing the problem of complex frequencies and modes caused by variable structural geometries.

Findings

Numerical results are presented for moderately thick circular cylindrical shells with different geometrical factors (circumferential wave number, thickness-to-radius ratio, thickness-to-length ratio) to demonstrate the effectiveness, accuracy and reliability of the proposed method. The hp-version refinement uses fewer optimised meshes than h-version mesh refinement, and only one-step interpolation of the higher-order shape function yields the eigensolutions satisfying the accuracy requirement.

Originality/value

The proposed combination of methodologies provides a complete hp-version adaptive FEM for analysing the free vibration of moderately thick circular cylindrical shells. This algorithm can be extended to general eigenproblems and geometric forms of structures to solve for the frequency and mode quickly and efficiently.

Article
Publication date: 3 May 2013

Pavel Karban, František Mach and Ivo Doležel

The paper presents the principal elements of automatic adaptivity built in our 2D software for monolithic solution of multiphysics problems based on a fully adaptive finite element

Abstract

Purpose

The paper presents the principal elements of automatic adaptivity built in our 2D software for monolithic solution of multiphysics problems based on a fully adaptive finite element method of higher order of accuracy. The adaptive techniques are illustrated by appropriate examples.

Design/methodology/approach

Presented are algorithms for realization of the h‐adaptivity, p‐adaptivity, hp‐adaptivity, creation of curvilinear elements for modelling general boundaries and interfaces. Indicated also is the possibility of combining triangular and quadrilateral elements (both classical and curved).

Findings

The presented higher‐order adaptive processes are reliable, robust and lead to a substantial reduction of the degrees of freedom in comparison with the techniques used in low‐order finite element methods. They allow solving examples that are by classical approaches either unsolvable or solvable at a cost of high memory and time of computation.

Research limitations/implications

The adaptive processes described in the paper are still limited to 2D computations. Their computer implementation is highly nontrivial (every physical field in a multiphysics task is generally solved on a different mesh satisfying its specific features) and in 3D the number of possible adaptive steps is many times higher.

Practical implications

The described adaptive techniques may represent a powerful tool for the monolithic solution of complex multiphysics problems.

Originality/value

The presented higher‐order adaptive approach of solution is shown to provide better results than the schemes implemented in professional codes based on low‐order finite element methods. Obtaining the results, moreover, requires less time and computer memory.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 September 2011

Pavel Karban, František Mach, Ivo Dolezel and Jerzy Barglik

The purpose of this paper is to present a methodology of high‐precision finite element modeling of induction heating of rotating nonferromagnetic cylindrical billets in static…

Abstract

Purpose

The purpose of this paper is to present a methodology of high‐precision finite element modeling of induction heating of rotating nonferromagnetic cylindrical billets in static magnetic field produced by appropriately arranged permanent magnets.

Design/methodology/approach

The mathematical model consisting of two partial differential equations describing the distribution of the magnetic and temperature fields are solved by a fully adaptive higher‐order finite element method in the monolithic formulation and selected results are validated experimentally.

Findings

The method of solution realized by own code is very fast, robust and exhibits much more powerful features when compared with classical low‐order numerical methods implemented in existing commercial codes.

Research limitations/implications

For sufficiently long arrangements the method provides good results even for 2D model. The principal limitation consists in problems with determining correct boundary conditions for the temperature field (generalized coefficient of convective heat transfer as a function of the temperature and revolutions).

Practical implications

The methodology can successfully be used for design of devices for induction heating of cylindrical nonmagnetic bodies by rotation and determination of their operation parameters.

Originality/value

The paper is a presentation of the fully adaptive higher‐order finite element and its utilization for a monolithic numerical solution of a relatively complicated coupled problem.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 30 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 July 2013

Sascha Duczek and Ulrich Gabbert

Piezoelectric actuators and sensors are an invaluable part of lightweight designs for several reasons. They can either be used in noise cancellation devices as thin‐walled…

Abstract

Purpose

Piezoelectric actuators and sensors are an invaluable part of lightweight designs for several reasons. They can either be used in noise cancellation devices as thin‐walled structures are prone to acoustic emissions, or in shape control approaches to suppress unwanted vibrations. Also in Lamb wave based health monitoring systems piezoelectric patches are applied to excite and to receive ultrasonic waves. The purpose of this paper is to develop a higher order finite element with piezoelectric capabilities in order to simulate smart structures efficiently.

Design/methodology/approach

In the paper the development of a new fully three‐dimensional piezoelectric hexahedral finite element based on the p‐version of the finite element method (FEM) is presented. Hierarchic Legendre polynomials in combination with an anisotropic ansatz space are utilized to derive an electro‐mechanically coupled element. This results in a reduced numerical effort. The suitability of the proposed element is demonstrated using various static and dynamic test examples.

Findings

In the current contribution it is shown that higher order coupled‐field finite elements hold several advantages for smart structure applications. All numerical examples have been found to agree well with previously published results. Furthermore, it is demonstrated that accurate results can be obtained with far fewer degrees of freedom compared to conventional low order finite element approaches. Thus, the proposed finite element can lead to a significant reduction in the overall numerical costs.

Originality/value

To the best of the author's knowledge, no piezoelectric finite element based on the hierarchical‐finiteelementmethod has yet been published in the literature. Thus, the proposed finite element is a step towards a holistic numerical treatment of structural health monitoring (SHM) related problems using p‐version finite elements.

Details

Engineering Computations, vol. 30 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 August 2001

Jaroslav Mackerle

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the…

1680

Abstract

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the end contains 2,177 references to papers, conference proceedings and theses/dissertations dealing with the subjects that were published in 1990‐2000.

Details

Engineering Computations, vol. 18 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 May 2024

Baharak Hooshyarfarzin, Mostafa Abbaszadeh and Mehdi Dehghan

The main aim of the current paper is to find a numerical plan for hydraulic fracturing problem with application in extracting natural gases and oil.

Abstract

Purpose

The main aim of the current paper is to find a numerical plan for hydraulic fracturing problem with application in extracting natural gases and oil.

Design/methodology/approach

First, time discretization is accomplished via Crank-Nicolson and semi-implicit techniques. At the second step, a high-order finite element method using quadratic triangular elements is proposed to derive the spatial discretization. The efficiency and time consuming of both obtained schemes will be investigated. In addition to the popular uniform mesh refinement strategy, an adaptive mesh refinement strategy will be employed to reduce computational costs.

Findings

Numerical results show a good agreement between the two schemes as well as the efficiency of the employed techniques to capture acceptable patterns of the model. In central single-crack mode, the experimental results demonstrate that maximal values of displacements in x- and y- directions are 0.1 and 0.08, respectively. They occur around both ends of the line and sides directly next to the line where pressure takes impact. Moreover, the pressure of injected fluid almost gained its initial value, i.e. 3,000 inside and close to the notch. Further, the results for non-central single-crack mode and bifurcated crack mode are depicted. In central single-crack mode and square computational area with a uniform mesh, computational times corresponding to the numerical schemes based on the high order finite element method for spatial discretization and Crank-Nicolson as well as semi-implicit techniques for temporal discretizations are 207.19s and 97.47s, respectively, with 2,048 elements, final time T = 0.2 and time step size τ = 0.01. Also, the simulations effectively illustrate a further decrease in computational time when the method is equipped with an adaptive mesh refinement strategy. The computational cost is reduced to 4.23s when the governed model is solved with the numerical scheme based on the adaptive high order finite element method and semi-implicit technique for spatial and temporal discretizations, respectively. Similarly, in other samples, the reduction of computational cost has been shown.

Originality/value

This is the first time that the high-order finite element method is employed to solve the model investigated in the current paper.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 August 2023

Aurojyoti Prusty and Amirtham Rajagopal

This study implements the fourth-order phase field method (PFM) for modeling fracture in brittle materials. The weak form of the fourth-order PFM requires C1 basis functions for…

Abstract

Purpose

This study implements the fourth-order phase field method (PFM) for modeling fracture in brittle materials. The weak form of the fourth-order PFM requires C1 basis functions for the crack evolution scalar field in a finite element framework. To address this, non-Sibsonian type shape functions that are nonpolynomial types based on distance measures, are used in the context of natural neighbor shape functions. The capability and efficiency of this method are studied for modeling cracks.

Design/methodology/approach

The weak form of the fourth-order PFM is derived from two governing equations for finite element modeling. C0 non-Sibsonian shape functions are derived using distance measures on a generalized quad element. Then these shape functions are degree elevated with Bernstein-Bezier (BB) patch to get higher-order continuity (C1) in the shape function. The quad element is divided into several background triangular elements to apply the Gauss-quadrature rule for numerical integration. Both fourth-order and second-order PFMs are implemented in a finite element framework. The efficiency of the interpolation function is studied in terms of convergence and accuracy for capturing crack topology in the fourth-order PFM.

Findings

It is observed that fourth-order PFM has higher accuracy and convergence than second-order PFM using non-Sibsonian type interpolants. The former predicts higher failure loads and failure displacements compared to the second-order model due to the addition of higher-order terms in the energy equation. The fracture pattern is realistic when only the tensile part of the strain energy is taken for fracture evolution. The fracture pattern is also observed in the compressive region when both tensile and compressive energy for crack evolution are taken into account, which is unrealistic. Length scale has a certain specific effect on the failure load of the specimen.

Originality/value

Fourth-order PFM is implemented using C1 non-Sibsonian type of shape functions. The derivation and implementation are carried out for both the second-order and fourth-order PFM. The length scale effect on both models is shown. The better accuracy and convergence rate of the fourth-order PFM over second-order PFM are studied using the current approach. The critical difference between the isotropic phase field and the hybrid phase field approach is also presented to showcase the importance of strain energy decomposition in PFM.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 September 2012

Pavel Karban, František Mach and Ivo Dolezel

The purpose of this paper is to present a model of induction heating of aluminium billets rotating in a static magnetic field generated by permanent magnets. The model is solved…

Abstract

Purpose

The purpose of this paper is to present a model of induction heating of aluminium billets rotating in a static magnetic field generated by permanent magnets. The model is solved by the authors' own software and the results are verified experimentally.

Design/methodology/approach

The mathematical model of the problem given by two partial differential equations describing the distribution of the magnetic and temperature fields in the system is solved by a fully adaptive higher‐order finite element method in the hard‐coupled formulation. All material nonlinearities are taken into account.

Findings

The method of solution realized by the code is reliable and works faster in comparison with the existing low‐order finite element codes.

Research limitations/implications

The method works for 2D arrangements with an extremely high accuracy. Its limitations consist mainly in problems of determining the coefficients of convection and radiation for temperature field in the system (respecting both temperature and revolutions).

Practical implications

The methodology can successfully be used for design of devices for induction heating of cylindrical nonmagnetic bodies by rotation and anticipation of their operation parameters.

Originality/value

The paper presents a fully adaptive higher‐order finite element and its utilization for a hard‐coupled numerical solution of the problem of induction heating.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 441