Search results

1 – 10 of 332
Article
Publication date: 5 August 2024

Christopher Igwe Idumah, Raphael Stone Odera and Emmanuel Obumneme Ezeani

Nanotechnology (NT) advancements in personal protective textiles (PPT) or personal protective equipment (PPE) have alleviated spread and transmission of this highly contagious…

Abstract

Purpose

Nanotechnology (NT) advancements in personal protective textiles (PPT) or personal protective equipment (PPE) have alleviated spread and transmission of this highly contagious viral disease, and enabled enhancement of PPE, thereby fortifying antiviral behavior.

Design/methodology/approach

Review of a series of state of the art research papers on the subject matter.

Findings

This paper expounds on novel nanotechnological advancements in polymeric textile composites, emerging applications and fight against COVID-19 pandemic.

Research limitations/implications

As a panacea to “public droplet prevention,” textiles have proven to be potentially effective as environmental droplet barriers (EDBs).

Practical implications

PPT in form of healthcare materials including surgical face masks (SFMs), gloves, goggles, respirators, gowns, uniforms, scrub-suits and other apparels play critical role in hindering the spreading of COVID-19 and other “oral-respiratory droplet contamination” both within and outside hospitals.

Social implications

When used as double-layers, textiles display effectiveness as SFMs or surgical-fabrics, which reduces droplet transmission to <10 cm, within circumference of ∼0.3%.

Originality/value

NT advancements in textiles through nanoparticles, and sensor integration within textile materials have enhanced versatile sensory capabilities, robotics, flame retardancy, self-cleaning, electrical conductivity, flexibility and comfort, thereby availing it for health, medical, sporting, advanced engineering, pharmaceuticals, aerospace, military, automobile, food and agricultural applications, and more. Therefore, this paper expounds on recently emerging trends in nanotechnological influence in textiles for engineering and fight against COVID-19 pandemic.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 24 August 2023

Kyle Engel, Paul Andrew Kilmartin and Olaf Diegel

The purpose of this study is to explore the synthesis of novel conductive photo-resins to produce flexible conducting composites for use in additive manufacturing. By using direct…

Abstract

Purpose

The purpose of this study is to explore the synthesis of novel conductive photo-resins to produce flexible conducting composites for use in additive manufacturing. By using direct ink writing (DIW) additive manufacturing, this study aims to explore the fabrication of multimaterial devices with conductive and insulating components. Using digital light processing (DLP) additive manufacturing, this study aims to fabricate detailed objects with higher resolution than material extrusion 3D printing systems.

Design/methodology/approach

In this paper, several photocurable conducting resins were prepared for DIW and DLP additive manufacturing. These resins were then cured using 405 nm near UV light to create intrinsically conductive polymer (ICP) composites. The electrochemical properties of these composites were analysed, and the effect of co-monomer choice and crosslinking density was determined. These results determined a suitable resin for subsequent additive manufacture using DIW and DLP. These 3D printing techniques were used to develop flexible conducting devices of submillimetre resolution that were fabricated with unmodified, commercially available 3D printers.

Findings

Cyclic voltammetry and volume conductivity analysis of the conducting resins determined the most conductive resin formula for 3D printing. Conductive devices were fabricated using the two 3D printing techniques. A multimaterial soft conducting device was fabricated using DIW, and each conducting component was insulated from its neighbours. DLP was used to fabricate a soft conducting device with good XY resolution with a minimum feature size of 0.2 mm. All devices were prepared in unmodified commercially available 3D printers.

Practical implications

These findings have value in the development of soft robotics, artificial muscles and wearable sensors. In addition, this work highlights techniques for DIW and DLP additive manufacturing.

Originality/value

Several original conducting resin formulae were developed for use in two 3D printing systems. The resulting 3D-printed composites are soft and flexible while maintaining their conductive properties. These findings are of value to both polymer chemists and to the field of additive manufacturing.

Details

Rapid Prototyping Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 July 2024

Kunal Arora, Mohit Kumar and Varun Sharma

The paper aims to fabricate shape memory composites using polylactic acid (PLA) matrix and graphite. Shape memory polymers are a promising family of materials for biomedical…

Abstract

Purpose

The paper aims to fabricate shape memory composites using polylactic acid (PLA) matrix and graphite. Shape memory polymers are a promising family of materials for biomedical applications because of their favourable mechanical properties, fast reactions and good biocompatibility. For most SMPs, however, achieving controllable sequential shape change is challenging.

Design/methodology/approach

In the present work, 4D printing technology is used to fabricate shape memory composites using polylactic acid (PLA) matrix and graphite. A comparative study of pure PLA and graphite’s different weight % composition has been done.

Findings

By carefully managing the deformation state, PLA with graphite shape memory composites produced controllable sequential deformation with an amazing shape memory effect. Surface morphology, thermal properties, melt flow index and shape recovery tests have all been carried out to assess the qualities of manufactured samples.

Originality/value

This is a one-of-a-kind to fabricate shape memory composites using graphite and a PLA matrix. Thus, this research attempts to deliver the possible use of PLA/graphite composites fabricated using 4D printing in robotics and biomedical devices.

Graphical Abstract

Details

Rapid Prototyping Journal, vol. 30 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 September 2024

Osman Ulkir

The aim of this study is to investigate the printing parameters of fused deposition modeling (FDM), a material extrusion-based method, and to examine the mechanical and thermal…

Abstract

Purpose

The aim of this study is to investigate the printing parameters of fused deposition modeling (FDM), a material extrusion-based method, and to examine the mechanical and thermal properties of their polylactic acid (PLA) components reinforced with copper, bronze, and carbon fiber micro particles.

Design/methodology/approach

Tensile test samples were created by extruding composite filament materials using FDM-based 3D printer. Taguchi method was used to design experiments where layer thickness, infill density, and nozzle temperature were the printing variables. Analysis of variance (ANOVA) was applied to determine the effect of these variables on tensile strength.

Findings

The results of this study showed that the reinforcement of metal particles in PLA material reduces strength and increases elongation. The highest tensile strength was obtained when the layer thickness, infill density, and nozzle temperature were set to 100 µm, 60%, and 230 °C, respectively. As a result of thermal analysis, cooper-PLA showed the highest thermal resistance among metal-based PLA samples.

Originality/value

It is very important to examine the mechanical and thermal quality of parts fabricated in FDM with metal-PLA composites. In the literature, the mechanical properties of metal-reinforced composite PLA parts have been examined using different factors and levels. However, the fabrication of parts using the FDM method with four different metal-added PLA materials has not been examined before. Another unique aspect of the study is that both mechanical and thermal properties of composite materials will be examined.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 February 2024

Ehab Samir Mohamed Mohamed Soliman

In the present study, a steel lifting lug is replaced with a composite (carbon fiber-reinforced epoxy [CFRP]) lifting lug made of a carbon/epoxy composite. The purpose of this…

48

Abstract

Purpose

In the present study, a steel lifting lug is replaced with a composite (carbon fiber-reinforced epoxy [CFRP]) lifting lug made of a carbon/epoxy composite. The purpose of this paper was to obtain a composite lifting lug with a higher level of strength that is capable of carrying loads without failure.

Design/methodology/approach

The vibration and static behaviors of steel and composite lifting lugs have been investigated using finite element analysis (FEA), ANSYS software. The main consideration in the design of the composite (CFRP) lifting lug was that the displacement of both steel and composite lugs was the same under the same load. Hence, by using the FEA displacement result of the steel lifting lug, the thickness of the composite lifting lug is determined using FEA.

Findings

Compared to the steel lifting lug, the composite (CFRP) lifting lug has much lower stresses and much higher natural frequencies. Static behavior was experienced by the composite lifting lug, showing a reduction in von Mises stress, third principal stress and XZ shear stress, respectively, by 48.4%, 34.6% and 89.8%, respectively, when compared with the steel lifting lug. A higher natural frequency of mode shape swaying in X (258.976√1,000 Hz) was experienced by the composite lifting lug when compared to the steel lifting lug (195.935√1,000 Hz). The safe strength of the design composite lifting lug has been proven by FEA results, which showed that the composite (CFRP) lifting lug has a higher factor of safety in all developed stresses than the steel lifting lug. According to von Mises stress, the factor of safety of the composite lifting lug is increased by 76% when compared to the steel lifting lug. The von Mises stress at the edge of the hole in the composite lifting lug is reduced from 23.763 MPa to 20.775 MPa when compared to the steel lifting lug.

Originality/value

This work presents the designed composite (CFRP) lifting lug, which will be able to carry loads with more safety than a steel one.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 November 2021

Ayodeji Emmanuel Oke, Ahmed Farouk Kineber, Ibraheem Albukhari and Adeyemi James Dada

The purpose of this paper is to evaluate the barriers militating against the adoption of robotics in the construction industry.

Abstract

Purpose

The purpose of this paper is to evaluate the barriers militating against the adoption of robotics in the construction industry.

Design/methodology/approach

Robotics implementation barriers were obtained from the previous studies and then through questionnaire survey construction stakeholders in Nigeria evaluate these barriers. Consequently, these barriers were examined via the exploratory factor analysis (EFA) technique. Furthermore, a model of these barriers was implemented by means of a partial least square structural equation modeling (PLS-SEM).

Findings

The EFA results showed that these barriers could be categorized into two: cost and technology. Results obtained from the proposed model showed that platform tools were crucial tools for implementing cloud computing.

Originality/value

The novelty of this research work will be provided a solid foundation for critically assessing and appreciating the different barriers affecting the adoption of robotics.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Content available
Book part
Publication date: 18 January 2024

Abstract

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Article
Publication date: 19 September 2024

Ashish Arunrao Desai and Subim Khan

The investigation aims to improve Nd: YAG laser technology for precision cutting of carbon fiber reinforcing polymers (CFRPs), specifically those containing newly created resin…

Abstract

Purpose

The investigation aims to improve Nd: YAG laser technology for precision cutting of carbon fiber reinforcing polymers (CFRPs), specifically those containing newly created resin (NDR) from the polyethylene and polyurea group, is the goal of the study. The focus is on showing how Nd: YAG lasers may be used to precisely cut CFRP with NDR materials, emphasizing how useful they are for creating intricate and long-lasting components.

Design/methodology/approach

The study employs a systematic approach that includes complicated factorial designs, Taguchi L27 orthogonal array trials, Gray relational analysis (GRA) and machine learning predictions. The effects of laser cutting factors on CFRP with NDR geometry are investigated experimentally, with the goal of optimizing the cutting process for greater quality and efficiency. The approach employs data-driven decision-making with GRA, which improves cut quality and manufacturing efficiency while producing high-quality CFRP composites. Integration of machine learning models into the optimization process significantly boosts the precision and cost-effectiveness of laser cutting operations for CFRP materials.

Findings

The work uses Taguchi L27 orthogonal array trials for systematically explore the effects of specified parameters on CFRP cutting. The cutting process is then optimized using GRA, which identifies influential elements and determines the ideal parameter combination. In this paper, initially machining parameters are established at level L3P3C3A2, and the optimal machining parameters are determined to be at levels L3P2C3A3 and L3P2C1A2, based on predictions and experimental results. Furthermore, the study uses machine learning prediction models to continuously update and optimize kerf parameters, resulting in high-quality cuts at a lower cost. Overall, the study presents a holistic method to optimize CFRP cutting processes employing sophisticated techniques such as GRA and machine learning, resulting in better quality and efficiency in manufacturing operations.

Originality/value

The novel concept is in precisely measuring the kerf width and deviation in CFRP samples of NDR using sophisticated imaging techniques like SEM, which improves analysis and precision. The newly produced resin from the polyethylene and polyurea group with carbon fiber offers a more precise and comprehensive understanding of the material's behavior under different cutting settings, which makes it novel for kerf width and kerf deviation in their studies. To optimize laser cutting settings in real time while considering laser machining conditions, the study incorporates material insights into machine learning models.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 7 December 2023

Murat Isik, Isa Emami Tabrizi, Raja Muhammad Awais Khan, Mehmet Yildiz, Eda Aydogan and Bahattin Koc

In recent years, additive manufacturing (AM) has started to be used for manufacturing real functional parts and assemblies for critical applications in aerospace, automotive, and…

Abstract

Purpose

In recent years, additive manufacturing (AM) has started to be used for manufacturing real functional parts and assemblies for critical applications in aerospace, automotive, and machinery industries. Most complex or assembled parts require internal features (IF) such as holes, channels, slots, or guides for locational and mating requirements. Therefore, it is critical to understand and compare the structural and mechanical properties of additively manufactured and conventionally machined IFs.

Design/methodology/approach

In this study, mechanical and microstructural properties of Inconel 718 (Inc718) alloy internal features, manufactured either as-built with AM or machining of additively manufactured (AMed) part thereafter were investigated.

Findings

The results showed that the average ultimate tensile strength (UTS) of additively manufactured center internal feature (AM-IF) is almost analogous to the machined internal feature (M-IF). However, the yield strength of M-IF is greater than that of AM-IF due the greater surface roughness of the internal feature in AM-IF, which is deemed to surpass the effect of microstructure on the mechanical performance. The results of digital image correlation (DIC) analysis suggest that AM-IF and M-IF conditions have similar strain values under the same stress levels but the specimens with as built IF have a more locally ductile region around their IF, which is confirmed by hardness test results. But this does not change global elongation behavior. The microstructural evolution starting from as-built (AB) and heat-treated (HT) samples to specimens with IF are examined. The microstructure of HT specimens has bimodal grain structure with d phase while the AB specimens display a very fine dendritic microstructure with the presence of carbides. Although they both have close values, machined specimens have a higher frequency of finer grains based on SEM images.

Originality/value

It was shown that the concurrent creation of the IF during AM can provide a final part with a preserved ultimate tensile strength and elongation but a decreased yield strength. The variation in UTS of AM-IF increases due to the surface roughness near the internal feature as compared to smooth internal surfaces in M-IF. Hence, the outcomes of this study are believed to be valuable for the industry in terms of determining the appropriate production strategy of parts with IF using AM and postprocessing processes.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 August 2023

Dhinesh S.K. and Senthil Kumar Kallippatti Lakshmanan

The purpose of this study is to increasing the gauge factor, reducing the hysteresis error and improving the stability over cyclic deformations of a conductive polylactic acid…

Abstract

Purpose

The purpose of this study is to increasing the gauge factor, reducing the hysteresis error and improving the stability over cyclic deformations of a conductive polylactic acid (CPLA)-based 3D-printed strain sensor by modifying the sensing element geometry.

Design/methodology/approach

Five different configurations, namely, linear, serpentine, square, triangular and trapezoidal, of CPLA sensing elements are printed on the thermoplastic polyurethane substrate material individually. The resistance change ratio of the printed sensors, when loaded to a predefined percentage of the maximum strain values over multiple cycles, is recorded. Finally, the thickness of substrate and CPLA and the included angle of the triangular strain sensor are evaluated for their influences on the sensitivity.

Findings

The triangular configuration yields the least hysteresis error with high accuracy over repeated loading conditions, because of its uniform stress distribution, whereas the conventional linear configuration produces the maximum sensitivity with low accuracy. The thickness of the substrate and sensing element has more influence over the included angle, in enhancing the sensitivity of the triangular configuration. The sensitivity of the triangular configuration exceeds the linear configuration when printed at ideal sensor dimensional values.

Research limitations/implications

The 3D printing parameters are kept constant for all the configurations; rather it can be varied for improving the performance of the sensor. Furthermore, the influences of stretching rate and nozzle temperature of the sensing material are not considered in this work.

Originality/value

The sensitivity and accuracy of CPLA-based strain sensor are evaluated for modification in its geometry, and the performance metrics are enhanced using the regression modelling.

Details

Rapid Prototyping Journal, vol. 29 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 332