Search results

1 – 10 of 167
Article
Publication date: 29 February 2024

Heng Liu, Yonghua Lu, Haibo Yang, Lihua Zhou and Qiang Feng

In the context of fixed-wing aircraft wing assembly, there is a need for a rapid and precise measurement technique to determine the center distance between two double-hole…

Abstract

Purpose

In the context of fixed-wing aircraft wing assembly, there is a need for a rapid and precise measurement technique to determine the center distance between two double-hole components. This paper aims to propose an optical-based spatial point distance measurement technique using the spatial triangulation method. The purpose of this paper is to design a specialized measurement system, specifically a spherically mounted retroreflector nest (SMR nest), equipped with two laser displacement sensors and a rotary encoder as the core to achieve accurate distance measurements between the double holes.

Design/methodology/approach

To develop an efficient and accurate measurement system, the paper uses a combination of laser displacement sensors and a rotary encoder within the SMR nest. The system is designed, implemented and tested to meet the requirements of precise distance measurement. Software and hardware components have been developed and integrated for validation.

Findings

The optical-based distance measurement system achieves high precision at 0.04 mm and repeatability at 0.02 mm within a range of 412.084 mm to 1,590.591 mm. These results validate its suitability for efficient assembly processes, eliminating repetitive errors in aircraft wing assembly.

Originality/value

This paper proposes an optical-based spatial point distance measurement technique, as well as a unique design of a SMR nest and the introduction of two novel calibration techniques, all of which are validated by the developed software and hardware platform.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 August 2023

Haifeng Fang, Yangyang Wei and Shuo Dong

Tactile sensation is an important sensory function for robots in contact with the external environment. To better acquire tactile information about objects, this paper aims to…

Abstract

Purpose

Tactile sensation is an important sensory function for robots in contact with the external environment. To better acquire tactile information about objects, this paper aims to propose a three-layer structure of the interdigital flexible tactile sensor.

Design/methodology/approach

The sensor consists of a bottom electrode layer, a middle pressure-sensitive layer and a top indenter layer. First, the pressure sensitive material, structure design, fabrication process and circuit design of the sensor are introduced. Then, the calibration and performance test of the designed sensor is carried out. Four functions are used to fit and calibrate the relationship between the output voltage of the sensor and the contact force. Finally, the contact force sensing test of different weight objects and the flexible test of the sensor are carried out.

Findings

The performance test results show that the sensitivity of the sensor is 0.93 V/N when it is loaded with 0–3 N and 0.23 V/N when it is loaded with 3–5 N. It shows good repeatability, and the cross-interference between the sensing units is generally low. The contact force sensing test results of different weight objects show that the proposed sensor performs well in contact force. Each part of the sensor is a flexible material, allowing the sensor to achieve bending deformation, so that the sensor can better perceive the contact signs of the grasped object.

Practical implications

The sensor can paste the surface of the paper robot’s gripper to measure the contact force of the grasping object and estimate the contour of the object.

Originality/value

In this paper, a three-layer interdigital flexible tactile sensor is proposed, and the structural parameters of the interdigital electrode are designed to improve the sensitivity and response speed of the sensor. The indenter with three shapes of the prism, square cylinder and hemisphere is preliminarily designed and the prism indenter with better conduction force is selected through finite element analysis, which can concentrate the external force in the sensing area to improve the sensitivity. The sensor designed in this paper can realize the measurement of contact force, which provides a certain reference for the field of robot tactile.

Details

Sensor Review, vol. 43 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 May 2023

Ling Weng, Zhuolin Li, Xu Luo, Yuanye Zhang and Yang Liu

This paper aims to design a magnetostrictive tactile sensor for surface depth detection. Unlike the human finger, although most tactile sensors have high sensitivity to pressure…

Abstract

Purpose

This paper aims to design a magnetostrictive tactile sensor for surface depth detection. Unlike the human finger, although most tactile sensors have high sensitivity to pressure, they cannot detect millimeter-level depth information on the surface of objects precisely. To enhance the ability to detect surface depth information, a piezomagnetic sensor combining inverse magnetostrictive effect and bionic structure is developed in this paper.

Design/methodology/approach

A magnetostrictive tactile sensor based on Galfenol [(Fe83Ga17)99.4B0.6] is designed and studied for surface depth measurement. The optimal structure of the sensor is determined by experiment and theory. The test platforms for static and dynamic characteristics are set up. The static and the dynamic sensing performance of the sensor are studied experimentally.

Findings

The sensor can detect 0–2 mm depth change with a sensitivity of 91.5 mV/mm. A resolution of 50 µm can be achieved in the depth direction. In 50 cycles of loading and unloading tests, the maximum error of the sensor output voltage amplitude is only 2.23%.

Originality/value

The sensor can measure the depth information of object surface precisely with good repeatability through sliding motion and provide reference for object surface topography detection.

Details

Sensor Review, vol. 43 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 26 April 2024

Vasudha Hegde, Narendra Chaulagain and Hom Bahadur Tamang

Identification of the direction of the sound source is very important for human–machine interfacing in the applications such as target detection on military applications and…

Abstract

Purpose

Identification of the direction of the sound source is very important for human–machine interfacing in the applications such as target detection on military applications and wildlife conservation. Considering its vast applications, this study aims to design, simulate, fabricate and test a bidirectional acoustic sensor having two cantilever structures coated with piezoresistive material for sensing has been designed, simulated, fabricated and tested.

Design/methodology/approach

The structure is a piezoresistive acoustic pressure sensor, which consists of two Kapton diaphragms with four piezoresistors arranged in Wheatstone bridge arrangement. The applied acoustic pressure causes diaphragm deflection and stress in diaphragm hinge, which is sensed by the piezoresistors positioned on the diaphragm. The piezoresistive material such as carbon or graphene is deposited at maximum stress area. Furthermore, the Wheatstone bridge arrangement has been formed to sense the change in resistance resulting into imbalanced bridge and two cantilever structures add directional properties to the acoustic sensor. The structure is designed, fabricated and tested and the dimensions of the structure are chosen to enable ease of fabrication without clean room facilities. This structure is tested with static and dynamic calibration for variation in resistance leading to bridge output voltage variation and directional properties.

Findings

This paper provides the experimental results that indicate sensor output variation in terms of a Wheatstone bridge output voltage from 0.45 V to 1.618 V for a variation in pressure from 0.59 mbar to 100 mbar. The device is also tested for directionality using vibration source and was found to respond as per the design.

Research limitations/implications

The fabricated devices could not be tested for practical acoustic sources due to lack of facilities. They have been tested for a vibration source in place of acoustic source.

Practical implications

The piezoresistive bidirectional sensor can be used for detection of direction of the sound source.

Social implications

In defense applications, it is important to detect the direction of the acoustic signal. This sensor is suited for such applications.

Originality/value

The present paper discusses a novel yet simple design of a cantilever beam-based bidirectional acoustic pressure sensor. This sensor fabrication does not require sophisticated cleanroom for fabrication and characterization facility for testing. The fabricated device has good repeatability and is able to detect the direction of the acoustic source in external environment.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 25 March 2024

Boyang Hu, Ling Weng, Kaile Liu, Yang Liu, Zhuolin Li and Yuxin Chen

Gesture recognition plays an important role in many fields such as human–computer interaction, medical rehabilitation, virtual and augmented reality. Gesture recognition using…

Abstract

Purpose

Gesture recognition plays an important role in many fields such as human–computer interaction, medical rehabilitation, virtual and augmented reality. Gesture recognition using wearable devices is a common and effective recognition method. This study aims to combine the inverse magnetostrictive effect and tunneling magnetoresistance effect and proposes a novel wearable sensing glove applied in the field of gesture recognition.

Design/methodology/approach

A magnetostrictive sensing glove with function of gesture recognition is proposed based on Fe-Ni alloy, tunneling magnetoresistive elements, Agilus30 base and square permanent magnets. The sensing glove consists of five sensing units to measure the bending angle of each finger joint. The optimal structure of the sensing units is determined through experimentation and simulation. The output voltage model of the sensing units is established, and the output characteristics of the sensing units are tested by the experimental platform. Fifteen gestures are selected for recognition, and the corresponding output voltages are collected to construct the data set and the data is processed using Back Propagation Neural Network.

Findings

The sensing units can detect the change in the bending angle of finger joints from 0 to 105 degrees and a maximum error of 4.69% between the experimental and theoretical values. The average recognition accuracy of Back Propagation Neural Network is 97.53% for 15 gestures.

Research limitations/implications

The sensing glove can only recognize static gestures at present, and further research is still needed to recognize dynamic gestures.

Practical implications

A new approach to gesture recognition using wearable devices.

Social implications

This study has a broad application prospect in the field of human–computer interaction.

Originality/value

The sensing glove can collect voltage signals under different gestures to realize the recognition of different gestures with good repeatability, which has a broad application prospect in the field of human–computer interaction.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 10 October 2023

Nastaran Mosleh, Masoud Esfandeh and Soheil Dariushi

Temperature is a critical factor in the fused filament fabrication (FFF) process, which affects the flow behavior and adhesion of the melted filament and the mechanical properties…

Abstract

Purpose

Temperature is a critical factor in the fused filament fabrication (FFF) process, which affects the flow behavior and adhesion of the melted filament and the mechanical properties of the final object. Therefore, modeling and predicting temperature in FFF is crucial for achieving high-quality prints, repeatability, process control and failure prediction. This study aims to investigate the melt deposition and temperature profile in FFF both numerically and experimentally using different Acrylonitrile Butadiene Styrene single-strand specimens. The process parameters, including layer thickness, nozzle temperature and build platform temperature, were varied.

Design/methodology/approach

COMSOL Multiphysics software was used to perform numerical simulations of fluid flow and heat transfer for the printed strands. The polymer melt/air interface was tracked using the coupling of continuity equation, equation of motion and the level set equation, and the heat transfer equation was used to simulate the temperature distribution in the deposited strand.

Findings

The numerical results show that increasing the nozzle temperature or layer thickness leads to an increase in temperature at points close to the nozzle, but the bed temperature is the main determinant of the overall layer temperature in low-thickness strands. The experimental temperature profile of the deposited strand was measured using an infrared (IR) thermal imager to validate the numerical results. The comparison between simulation and observed temperature at different points showed that the numerical model accurately predicts heat transfer in the three-dimensional (3D) printing of a single-strand under different conditions. Finally, a parametric analysis was performed to investigate the effect of selected parameters on the thermal history of the printed strand.

Originality/value

The numerical results show that increasing the nozzle temperature or layer thickness leads to an increase in temperature at points close to the nozzle, but the bed temperature is the main determinant of the overall layer temperature in low-thickness strands. The experimental temperature profile of the deposited strand was measured using an IR thermal imager to validate the numerical results. The comparison between simulation and observed temperature at different points showed that the numerical model accurately predicts heat transfer in the 3D printing of a single-strand under different conditions. Finally, a parametric analysis was performed to investigate the effect of selected parameters on the thermal history of the printed strand.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 October 2023

Zhanshe Guo, Xiangdang Liang and Sen Wang

This measuring system is designed to effectively simulate the mechanical reliability of the operated bone fixators. It can be used to pre-evaluate the mechanical performance of…

Abstract

Purpose

This measuring system is designed to effectively simulate the mechanical reliability of the operated bone fixators. It can be used to pre-evaluate the mechanical performance of the operated fixator on the patients, including the static mechanical properties and fatigue properties when the patient walks after the operation.

Design/methodology/approach

It is mainly composed of a one-dimensional platform, a force sensor, a high measuring precision displacement sensor and a servo motor. Loading (which is used to simulate the loading status of the fixators after the operation) of the system is realized by the rotation of the servo motor. It can be read by a high precision force sensor. The relative displacement of the broken bone is obtained by a high precision laser displacement sensor. Corresponding theoretical analysis is also carried out.

Findings

Calibrated results of the system indicate that the output voltage and the measured force of the force sensors possess an excellent linear relationship, and the calculated nonlinear error is just 0.0002%. The maximum relative displacement between the operated broken bone under 700 N axial force is about 1 mm. Fatigue test under 550 N loading for 85,000 cycles also indicates the feasibility of the design.

Originality/value

This device is successfully designed and fabricated to pre-evaluate the mechanical performance of the bone fixators. High precision force sensor and displacement sensor are used to successfully increase the measuring ability of the system. This will offer some help to pertinent researchers.

Details

Sensor Review, vol. 43 no. 5/6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 October 2023

Sara Pope and Robert L. Jackson

The purpose of this paper is to use a wear test to determine the effect of sand on the wear rates of materials typically used in aerospace applications. Once a repeatable wear…

Abstract

Purpose

The purpose of this paper is to use a wear test to determine the effect of sand on the wear rates of materials typically used in aerospace applications. Once a repeatable wear test has been established, it can be used to test any combination of materials or coatings. The effectiveness of several different test methods will also be evaluated, including the sample height, surface roughness and mass difference. In addition, the current work will observe the differences between applying sand before the samples are brought into contact or after. The wear rates obtained from these tests could also be used to predict the wear of other components in similar abrasive particulate environments.

Design/methodology/approach

A modified block-on-flat wear test of anodized aluminum on hard coat anodized aluminum was used to study this. The experiments were performed with and without sand to study the effects of the sand. Two methods of adding sand were also evaluated. Weighing and profilometry were used to study the differences between the tests.

Findings

Wear rates have been calculated based on both the change in the masses of the samples and the change in the height between the upper and lower samples over the course of each test. The wear rates from the change in the masses are repeatable with and without sand, but the results for the change in height show no repeatability without sand. In addition, only in the presence of sand do the trends for the two methods agree. The wear rate was found to be non-linear as a function of load and therefore not in agreement with Archard’s Wear Law. The wear rate also increased significantly when sand was present in the contact for the duration of the test. The sand appears to change the wear mechanism from an adhesive to an abrasive mechanism. Black wear particles formed both when there was sand and when there was not sand. The source of these particles has been investigated but not determined.

Originality/value

This work has not been previously published and is the original work of the authors.

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 3 April 2023

Bastian Burger, Dominik K. Kanbach, Sascha Kraus, Matthias Breier and Vincenzo Corvello

The article discusses the current relevance of artificial intelligence (AI) in research and how AI improves various research methods. This article focuses on the practical case…

18551

Abstract

Purpose

The article discusses the current relevance of artificial intelligence (AI) in research and how AI improves various research methods. This article focuses on the practical case study of systematic literature reviews (SLRs) to provide a guideline for employing AI in the process.

Design/methodology/approach

Researchers no longer require technical skills to use AI in their research. The recent discussion about using Chat Generative Pre-trained Transformer (GPT), a chatbot by OpenAI, has reached the academic world and fueled heated debates about the future of academic research. Nevertheless, as the saying goes, AI will not replace our job; a human being using AI will. This editorial aims to provide an overview of the current state of using AI in research, highlighting recent trends and developments in the field.

Findings

The main result is guidelines for the use of AI in the scientific research process. The guidelines were developed for the literature review case but the authors believe the instructions provided can be adjusted to many fields of research, including but not limited to quantitative research, data qualification, research on unstructured data, qualitative data and even on many support functions and repetitive tasks.

Originality/value

AI already has the potential to make researchers’ work faster, more reliable and more convenient. The authors highlight the advantages and limitations of AI in the current time, which should be present in any research utilizing AI. Advantages include objectivity and repeatability in research processes that currently are subject to human error. The most substantial disadvantages lie in the architecture of current general-purpose models, which understanding is essential for using them in research. The authors will describe the most critical shortcomings without going into technical detail and suggest how to work with the shortcomings daily.

Details

European Journal of Innovation Management, vol. 26 no. 7
Type: Research Article
ISSN: 1460-1060

Keywords

Article
Publication date: 9 June 2022

Xiaoyan Wang, Jiaxin Zhang, Yang Jiang, Jinmei Du, Dagang Miao and Changhai Xu

This paper aims to determine the most practically applicable color-difference formula for yarn-dyed fabrics woven from warp and weft yarns in different color depths and to…

Abstract

Purpose

This paper aims to determine the most practically applicable color-difference formula for yarn-dyed fabrics woven from warp and weft yarns in different color depths and to establish color-difference tolerance for perceptibility by evaluating yarn-dyed fabrics visually and instrumentally.

Design/methodology/approach

A total of 108 sample pairs were evaluated by a panel of 13 observers with perceptibility method under three typical light sources (A, D65 and cool white fluorescent). The data sets were statistically analyzed by the homogeneity of variance test (F-test), analysis of variance, standardized residual sum of squares and performance factor/3.

Findings

Light sources had a slight influence on the visual assessments of yarn-dyed fabrics. Among the eight color-difference formulae for measurements of yarn-dyed fabrics, CIEDE2000(2:1:1) outperformed all other tested formulae, and the color tolerance for the perceptibility of CIEDE2000(2:1:1) was 0.62. When the homochromy index (K) of warp and weft yarns of yarn-dyed fabric was lower than 1.25, the color difference based on ΔE*00(2:1:1) between the two samples was acceptable in terms of the color tolerance for perceptibility (i.e. 0.62).

Practical implications

The warp and weft yarns in different color depths could be woven in fabric with a relatively uniform color appearance.

Originality/value

This study could contribute to cost savings by reusing disqualified dyed yarns during the weaving manufacturing process.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Access

Year

Last 12 months (167)

Content type

Article (167)
1 – 10 of 167