Search results

1 – 10 of 340
Article
Publication date: 16 May 2016

Shuntao Liu, Zhixiong Yang, Zhijun Zhu, Liangliang Han, Xiangyang Zhu and Kai Xu

Slim and dexterous manipulators with long reaches can perform various exploration and inspection tasks in confined spaces. This paper aims to present the development of such a…

Abstract

Purpose

Slim and dexterous manipulators with long reaches can perform various exploration and inspection tasks in confined spaces. This paper aims to present the development of such a dexterous continuum manipulator for potential applications in the aviation industry.

Design/methodology/approach

Benefiting from a newly conceived dual continuum mechanism and the improved actuation scheme, this paper proposes a design of a slim and dexterous continuum manipulator. Kinematics modeling, simulation-based dimension synthesis, structural constructions and system descriptions are elaborated.

Findings

Experimental validations show that the constructed prototype possesses the desired dexterity to navigate through confined spaces with its kinematics calibrated and actuation compensation implemented. The continuum manipulator with different deployed tools (e.g. graspers and welding guns) would be able to perform inspections and other tasks at remote locations in constrained environments.

Research limitations/implications

The current construction of the continuum manipulator possesses quite some friction inside its structure. The bending discrepancy caused by friction could accumulate to an obvious level. It is desired to further reduce the friction, even though the actuation compensation had been implemented.

Practical implications

The constructed continuum manipulator could perform inspection and other tasks in confined spaces, acting as an active multi-functional endoscopic platform. Such a device could greatly facilitate routine tasks in the aviation industry, such as guided assembling, inspection and maintenance.

Originality/value

The originality and values of this paper mainly lay on the design, modeling, construction and experimental validations of the slim and dexterous continuum manipulator for the desired mobility and functionality in confined spaces.

Details

Industrial Robot: An International Journal, vol. 43 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 December 1997

Keith Antonelli and Guy Immega

From elephant trunks to octopus legs and human tongues, nature abounds with tentacles that are adept at manipulation. Kinetic Sciences Inc. has developed a robotic tentacle that…

Abstract

From elephant trunks to octopus legs and human tongues, nature abounds with tentacles that are adept at manipulation. Kinetic Sciences Inc. has developed a robotic tentacle that moves like an organic tentacle and extends and contracts with independently controlled bending and compliance in two or more regions. Remote tendon‐driven actuation keeps actuator mass away from the manipulator for impressive strength‐to‐weight performance. Customizable in length and diameter, and optionally available with wrist‐rotate, gripper, and computer control, the KSI Tentacletm has broad potential for a variety of teleoperated or automated applications including vacuuming, spray washing, general materials handling, agricultural harvesting, robotic refuelling, inspection, and endoscopy. The KSI Tentacletm manipulator is suited to low‐cost mass‐production, and thus can be considered a “disposable robot”.

Details

Industrial Robot: An International Journal, vol. 24 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 March 1995

A new, non‐explosive actuator (NEA) developed by G&H Technology holds tensile loads of up to 12,500lb and quickly releases them when electronically activated. The Model 1203…

Abstract

A new, non‐explosive actuator (NEA) developed by G&H Technology holds tensile loads of up to 12,500lb and quickly releases them when electronically activated. The Model 1203 actuator is stated to be safe, fast‐acting and highly reliable, and release occurs with minimum shock. The actuator is ideal for a wide range of remote actuation requirements such as those found in space, launch vehicle, downhole drilling, undersea and nuclear power applications.

Details

Aircraft Engineering and Aerospace Technology, vol. 67 no. 3
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 1 June 1996

Howard Smith

Reports on the MSc group design project of students at the College of Aeronautics, aerospace vehicle design in 1995. The students worked on advanced short take‐off and vertical…

Abstract

Reports on the MSc group design project of students at the College of Aeronautics, aerospace vehicle design in 1995. The students worked on advanced short take‐off and vertical landing of a combat aircraft. Details the project showing aircraft dimensions and design. Full assessment of the results is pending, but outlines a number of problems faced by the students.

Details

Aircraft Engineering and Aerospace Technology, vol. 68 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 28 January 2020

John Carrell, Garrett Gruss and Elizabeth Gomez

This paper aims to provide a review of four-dimensional (4D) printing using fused-deposition modeling (FDM). 4D printing is an emerging innovation in (three-dimensional) 3D…

1304

Abstract

Purpose

This paper aims to provide a review of four-dimensional (4D) printing using fused-deposition modeling (FDM). 4D printing is an emerging innovation in (three-dimensional) 3D printing that encompasses active materials in the printing process to create not only a 3D object but also a 3D object that can perform an active function. FDM is the most accessible form of 3D printing. By providing a review of 4D printing with FDM, this paper has the potential in educating the many FDM 3D printers in an additional capability with 4D printing.

Design/methodology/approach

This is a review paper. The approach was to search for and review peer-reviewed papers and works concerning 4D printing using FDM. With this discussion of the shape memory effect, shape memory polymers and FDM were also made.

Findings

4D printing has become a burgeoning area in addivitive manufacturing research with many papers being produced within the past 3-5 years. This is especially true for 4D printing using FDM. The key findings from this review show the materials and material composites used for 4D printing with FDM and the limitations with 4D printing with FDM.

Research limitations/implications

Limitations to this paper are with the availability of papers for review. 4D printing is an emerging area of additive manufacturing research. While FDM is a predominant method of 3D printing, it is not a predominant method for 4D printing. This is because of the limitations of FDM, which can only print with thermoplastics. With the popularity of FDM and the emergence of 4D printing, however, this review paper will provide key resources for reference for users that may be interested in 4D printing and have access to a FDM printer.

Practical implications

Practically, FDM is the most popular method for 3D printing. Review of 4D printing using FDM will provide a necessary resource for FDM 3D printing users and researchers with a potential avenue for design, printing, training and actuation of active parts and mechanisms.

Social implications

Continuing with the popularity of FDM among 3D printing methods, a review paper like this can provide an initial and simple step into 4D printing for researchers. From continued research, the potential to engage general audiences becomes more likely, especially a general audience that has FDM printers. An increase in 4D printing could potentially lead to more designs and applications of 4D printed devices in impactful fields, such as biomedical, aerospace and sustainable engineering. Overall, the change and inclusion of technology from 4D printing could have a potential social impact that encourages the design and manufacture of such devices and the treatment of said devices to the public.

Originality/value

There are other 4D printing review papers available, but this paper is the only one that focuses specifically on FDM. Other review papers provide brief commentary on the different processes of 4D printing including FDM. With the specialization of 4D printing using FDM, a more in-depth commentary results in this paper. This will provide many FDM 3D printing users with additional knowledge that can spur more creative research in 4D printing. Further, this paper can provide the impetus for the practical use of 4D printing in more general and educational settings.

Details

Rapid Prototyping Journal, vol. 26 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 14 August 2017

Jose Ignacio Tamayo Segarra, Bilal Al Jammal and Hakima Chaouchi

Internet of Things’ (IoT’s) first wave started with tracking services for better inventory management mainly using radio frequency identification (RFID) technology. Later on…

2887

Abstract

Purpose

Internet of Things’ (IoT’s) first wave started with tracking services for better inventory management mainly using radio frequency identification (RFID) technology. Later on, monitoring services became one of the major interests, including sensing technologies, and then more actuation for remote control-type of IoT applications such as smart homes, smart cities and Industry 4.0. In this paper, the authors focus on the RFID technology impairment. They propose to take advantage of the mature IoT technologies that offer native service discovery such as blutooth or LTE D2D ProSe or Wifi Direct. Using the automatic service discovery in the new framework will make heterogeneous readers aware of the presence of other readers and this will be used by the proposed distributed algorithm to better control the multiple RFID reader interference problem. The author clearly considers emerging Industry 4.0 use case, where RFID technology is of major interest for both identification and tracking. To enhance the RFID tag reading performance, collisions in the RFID frequency should be minimized with reader-to-reader coordination protocols. In this paper, the author proposes a simple distributed reader anti-collision protocol named DiSim that makes use of proximity services of IoT network and is compliant with the current RFID standards. The author evaluates the efficiency of the proposal via simulation.

Design/methodology/approach

In this paper, the author proposes a simple distributed reader anti-collision protocol named DiSim that makes use of proximity services of IoT network and is compliant with the current RFID standards. The author evaluates the efficiency of the proposal via simulation to study its behavior in very dense and heterogeneous RFID environments. Specifically, the author explores the coexistence of powerful static readers and small mobile readers, comparing the proposal with a standard ETSI CSMA method. The proposal reduces significantly the number of access attempts, which are resource-expensive for the readers. The results show that the objectives of DiSim are met, producing low reader collision probability and, however, having lower average readings per reader per time.

Findings

DiSim is evaluated with the ETSI standard LBT protocol for multi-reader environments in several environments with varied levels of reader and tag densities, having both static powerful RFID readers and heterogeneous randomly moving mobile RFID readers. It effectively reduces the number of backoffs or contentions for the RFID channel. This has high reading success rate due to the avoided collisions; however, the readers are put to wait, and DiSim has less average readings per reader per time. As an additional side evaluation, the ETSI standard LBT mechanism was found to present a good performance for low-density mid-coverage scenarios, however, with high variability on the evaluation results.

Research limitations/implications

To show more results, the author needs to do real experimentation in a warehouse, such as Amazon warehouse, where he expects to have more and more robots, start shelves, automatic item finding on the shelve, etc.

Practical implications

Future work considers experimentation in a real warehouse equipped with heterogeneous RFID readers and real-time analysis of RFID reading efficiency also combined with indoor localization and navigation for warehouse mobile robots.

Social implications

More automatization is expected in the future; this work makes the use of RFID technology more efficient and opens more possibilities for services deployment in different domains such as the industry which was considered not only in this paper but also in smart cites and smart homes.

Originality/value

Compared to the literature, the proposal offers the advantage to not be dependent on a centralized server controlling the RFID readers. It also offers the possibility for an existing RFID architecture to add new readers from a different manufacturer, as the readers using the approach will have the possibility to discover the capabilities of the new interaction other RFID readers. This solution takes advantage of the available proximity service that will be more and more offered by the IoT technologies.

Article
Publication date: 11 July 2016

Jochen Teizer

The purpose of this paper is to investigate the critical time window for pro-active construction accident prevention and response. Large to small organisations throughout the…

1959

Abstract

Purpose

The purpose of this paper is to investigate the critical time window for pro-active construction accident prevention and response. Large to small organisations throughout the entire construction supply chain continue to be challenged to adequately prevent accidents. Construction worker injuries and fatalities represent significant waste of resources. Although the five C’s (culture, competency, communication, controls and contractors) have been focusing on compliance, good practices and best-in-class strategies, even industry leaders have only marginal improvements in recorded safety statistics for many years.

Design/methodology/approach

Right-time vs real-time construction safety and health identifies three major focus areas to aid in the development of a strategic, as opposed to tactical, response. Occupational safety and health by design, real-time safety and health monitoring and alerts and education, training and feedback leveraging state-of-the-art technology provide meaningful predictive, quantitative and qualitative measures to identify, correlate and eliminate hazards before workers get injured or incidents cause collateral damage.

Findings

The current state and development of existing innovative initiatives in the occupational construction safety and health domain are identified. A framework for right-time vs real-time construction safety and health presents the specific focus on automated safety and health data gathering, analysis and reporting to achieve better safety performance. The developed roadmap for right-time vs real-time safety and health is finally tested in selected application scenarios of high concern in the construction industry.

Originality/value

A strategic roadmap to eliminate hazards and accidents through right-time vs real-time automation is presented that has practical as well as social implications on conducting a rigorous safety culture and climate in a construction business and its entire supply chain.

Article
Publication date: 16 June 2023

Mohamed Tahir Shoani, Mohamed Najib Ribuan and Ahmad 'Athif Mohd Faudzi

The current methods for inspecting tall or deep structures such as towers, chimneys, silos, and wells suffer from certain constraints. Manual and assisted inspection methods…

137

Abstract

Purpose

The current methods for inspecting tall or deep structures such as towers, chimneys, silos, and wells suffer from certain constraints. Manual and assisted inspection methods including humans, drones, wall climbing robots, and others are either costly, have a limited operation time, or affected by field conditions, such as temperature and radiation. This study aims to overcome the presented challenges through a teleoperated soft continuum manipulator capable of inspecting tall or deep structures with high resolution, an unlimited operation time and the ability to use different arms of the manipulator for different environments and structure sizes.

Design/methodology/approach

The teleoperated manipulator uses one rotary and two tendon actuators to reach and inspect the interior of a tall (or deep) structure. A sliding part along the manipulator’s body (arm constrainer and tendon router) induces a variable-length bending segment, allowing an inspection camera to be placed at different distances from the desired location.

Findings

The experiments confirmed the manipulator’s ability to inspect different locations in the structure’s interior. The manipulator also demonstrated a submillimeter motion resolution vertically and a 2.5 mm per step horizontally. The inspection time of the full structure was 48.53 min in the step-by-step mode and was calculated to be 4.23 min in the continuous mode.

Originality/value

The presented manipulator offers several design novelties: the arm’s thin-wide cross-section, the variable-length bending segment in a fixed-length body, the external rolling tendon routing and the ability to easily replace the arm with another of different material or dimensions to suite different structures and environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 June 2019

Zhixiong Yang, Bin Zhao, Liang Bo, Xiangyang Zhu and Kai Xu

Pick-and-place tasks are common across many industrial sectors, and many rigid-linked robots have been proposed for this application. This paper aims to alternatively present the…

Abstract

Purpose

Pick-and-place tasks are common across many industrial sectors, and many rigid-linked robots have been proposed for this application. This paper aims to alternatively present the development of a continuum robot for low-load medium-speed pick-and-place tasks.

Design/methodology/approach

An inversion of a previously proposed dual continuum mechanism, as a key design element, was used to realize the horizontal movements of the CurviPicker’s end effector. A flexible shaft was inserted to realize rotation and translation about a vertical axis. The design concept, kinematics, system descriptions and proof-of-concept experimental characterizations are elaborated.

Findings

Experimental characterizations show that the CurviPicker can achieve satisfactory accuracy after motion calibration. The CurviPicker is easy to control due to its simple kinematics, while its structural compliance makes it safe to work with, as well as less sensitive to possible target picking position errors to avoid damaging itself or the to-be-picked objects.

Research limitations/implications

The vertical translation of the CurviPicker is currently realized by moving the flexible shaft. Insertion of the flexible shaft introduces possible disturbances. It is desired to explore other form of variations to use structural deformation to realize the vertical translation.

Practical implications

The proposed CurviPicker realizes the Schöenflies motions via a simple structure. Such a robot can be used to increase robot presence and automation in small businesses for low-load medium-speed pick-and-place tasks.

Originality/value

To the best of the authors’ knowledge, the CurviPicker is the first continuum robot designed and constructed for pick-and-place tasks. The originality stems from the concept, kinematics, development and proof-of-concept experimental characterizations of the CurviPicker.

Details

Assembly Automation, vol. 39 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Content available
Article
Publication date: 1 January 2006

833

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 78 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of 340