Search results

1 – 10 of over 21000
Article
Publication date: 9 February 2021

Hao Guo, Feng Ju, Ning Wang, Bai Chen, Xiaoyong Wei, Yaoyao Wang and Dan Wang

Continuum manipulators are often used in complex and narrow space in recent years because of their flexibility and safety. Vision is considered to be one of the most direct…

Abstract

Purpose

Continuum manipulators are often used in complex and narrow space in recent years because of their flexibility and safety. Vision is considered to be one of the most direct methods to obtain its spatial shape. However, with the improvement of the cooperation requirements of multiple continuum manipulators and the increase of space limitation, it is impossible to obtain the complete spatial shape information of multiple continuum manipulators only by several cameras.

Design/methodology/approach

This paper proposes a fusion method using inertial navigation sensors and cameras to reconstruct the shape of continuum manipulators in the whole workspace. The camera is used to obtain the position information, and the inertial navigation sensor is used to obtain the attitude information. Based on the above two information, the shape of the continuum manipulator is reconstructed by fitting Bézier curve.

Findings

The experiment result of single continuum manipulator shows that the cubic Bézier curves is applicable to curve fitting of variable curvature, the maximum fitting error is about 2 mm. Meanwhile, the experiment result shows that this method is not affected by obstacles and can still reconstruct the shape of the continuum manipulators in 3-D space by detecting the position and attitude information of the end.

Originality/value

According to the authors’ knowledge, this is the first study on spatial shape reconstruction of multiple continuum manipulators and the first study to introduce inertial navigation sensors and cameras into the field of shape reconstruction of multiple continuum manipulators in narrow space. This method is suitable for shape reconstruction of manipulator with variable curvature continuum manipulator. When the vision of multiple continuum manipulators is blocked by obstacles, the spatial shape can still be reconstructed only by exposing the end point. The structure is simple, but it has certain accuracy within a certain range.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 8 September 2023

Fei Qi, Dongming Bai, Xiaoming Dou, Heng Zhang, Haishan Pei and Jing Zhu

This paper aims to present a kinematics analysis method and statics based control of the continuum robot with mortise and tenon joints to achieve better control performance of the…

Abstract

Purpose

This paper aims to present a kinematics analysis method and statics based control of the continuum robot with mortise and tenon joints to achieve better control performance of the robot.

Design/methodology/approach

The kinematics model is derived by the geometric analysis method under the piecewise constant curvature assumption, and the workspace and dexterity of the proposed robot are analyzed to optimize its structure parameters. Moreover, the statics model is established by the principle of virtual work, which is used to analyze the mapping relationship between the bending deformation and the applied forces/torques. To improve the control accuracy of the robot, a model-based controller is put forward.

Findings

Results of the experiments verify the feasibility of the proposed continuum structure and the correctness of the established model and the control method. The force deviation between the theoretical value and the actual value is relatively small, and the mean value of the deviation between the driving forces is only 0.46 N, which verify the established statics model and the controller.

Originality/value

The proposed model and motion controller can realize its accurate bending control with a few deviations, which can be used as the reference for the motion planning and dynamic model of the continuum robot.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 14 May 2020

Liang Yang, Andrew Buchan, Dimitrios Pavlidis, Alan Jones, Paul Smith, Mikio Sakai and Christopher Pain

This paper aims to propose a three-phase interpenetrating continua model for the numerical simulation of water waves and porous structure interaction.

Abstract

Purpose

This paper aims to propose a three-phase interpenetrating continua model for the numerical simulation of water waves and porous structure interaction.

Design/methodology/approach

In contrast with one-fluid formulation or multi-component methods, each phase has its own characteristics, density, velocity, etc., and each point is occupied by all phases. First, the porous structure is modelled as a phase of continua with a penalty force adding on the momentum equation, so the conservation of mass is guaranteed without source terms. Second, the adaptive unstructured mesh modelling with P1DG-P1 elements is used here to decrease the total number of degree of freedom maintaining the same order of accuracy.

Findings

Several benchmark problems are used to validate the model, which includes the Darcy flow, classical collapse of water column and water column with a porous structure. The interpenetrating continua model is a suitable approach for water wave and porous structure interaction problem.

Originality/value

The interpenetrating continua model is first applied for the water wave and porous structure interaction problem. First, the structure is modelled as phase of non-viscous fluid with penalty force, so the break of the porous structure, porosity changes can be easily embedded for further complex studies. Second, the mass conservation of fluids is automatically satisfied without special treatment. Finally, adaptive anisotropic mesh in space is employed to reduce the computational cost.

Details

Engineering Computations, vol. 38 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1993

R. DE BORST, L.J. SLUYS, H.‐B. MUHLHAUS and J. PAMIN

Classical continuum models, i.e. continuum models that do not incorporate an internal length scale, suffer from excessive mesh dependence when strain‐softening models are used in…

1795

Abstract

Classical continuum models, i.e. continuum models that do not incorporate an internal length scale, suffer from excessive mesh dependence when strain‐softening models are used in numerical analyses and cannot reproduce the size effect commonly observed in quasi‐brittle failure. In this contribution three different approaches will be scrutinized which may be used to remedy these two intimately related deficiencies of the classical theory, namely (i) the addition of higher‐order deformation gradients, (ii) the use of micropolar continuum models, and (iii) the addition of rate dependence. By means of a number of numerical simulations it will be investigated under which conditions these enriched continuum theories permit localization of deformation without losing ellipticity for static problems and hyperbolicity for dynamic problems. For the latter class of problems the crucial role of dispersion in wave propagation in strain‐softening media will also be highlighted.

Details

Engineering Computations, vol. 10 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1994

J. Montero, D.J. Tejada and J. Yáñez

A general concept of a structure function is proposed by considering a general order topology, where possible degrees of performance for the system and its components are going to…

193

Abstract

A general concept of a structure function is proposed by considering a general order topology, where possible degrees of performance for the system and its components are going to be represented. Finite multistate structure functions and continuum structures can therefore be viewed as particular cases. Gives general definitions of minimal path and minimal cut, allowing general reliability bounds based on them. These are applied to some multivalued structures.

Details

Kybernetes, vol. 23 no. 3
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 14 June 2019

I St Doltsinis

The employment of spring cell substitutes for the numerical analysis of solids and structures in place of finite elements has occasioned research on the subject with regard to…

Abstract

Purpose

The employment of spring cell substitutes for the numerical analysis of solids and structures in place of finite elements has occasioned research on the subject with regard to both, the applicability of existing approaches and the advancement of concepts. This paper aims to explore in the context of linear elasticity the substitution of the simplex tetrahedral element in space and the triangle in the plane by corresponding spring cells deduced on a flexibility basis using the natural formalism.

Design/methodology/approach

The natural formalism is characterized by the homogeneous definition of strain and stress along the lines connecting nodes of the simplex tetrahedron and the triangle. The elastic compliance involves quantities along the prospective spring directions and offers itself for the transition to the spring cell. The diagonal entities are interpreted immediately as spring flexibilities, the off-diagonal terms account for the completeness of the substitution. In addition to the isotropic elastic material, the concept is discussed for anisotropic elasticity in the plane.

Findings

The natural point of view establishes the spring cell as part of the continuum element. The simplest configuration of pin-joined bars discards all geometrical and physical cross effects. The approach is attracting by its transparent simplicity, revealing deficiencies of the spring cell and identifying directly conditions for the complete substitution of the finite element.

Research limitations/implications

The spring cell counterparts of the tetrahedral- and the triangular finite elements allow employment in problems in three and two dimensions. However, the deficient nature of the approximation requires attention in the design of the discretization lattice such that the conditions of complete finite element substitution are approached as close as possible.

Practical implications

Apart from plane geometries, triangular spring cells have been assembled to lattice models of space structures such as membrane shells and similar. Tetrahedral cells have been used, in modelling plates and shell structures exhibiting bending stiffness.

Originality/value

The natural formalism of simplex finite elements in three and two dimensions is used for defining spring cells on a flexibility basis and exploring their properties. This is a novel approach to spring cells and an original employment of the natural concept in isotropic and anisotropic elasticity.

Details

Engineering Computations, vol. 36 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 June 2018

Ryan Vroegindewey, Veronique Theriault and John Staatz

The purpose of this paper is to examine how various transaction-cost characteristics influence the choice of vertical coordination (VC) structures (e.g. different contract types…

Abstract

Purpose

The purpose of this paper is to examine how various transaction-cost characteristics influence the choice of vertical coordination (VC) structures (e.g. different contract types) and horizontal coordination (HC) structures (e.g. different farmer organization types) to link smallholder farmers efficiently with buyers. It analyzes the relationship between vertical and horizontal structures, and the economic sustainability of different structure combinations.

Design/methodology/approach

The paper develops a conceptual framework to predict coordination structures as a function of transaction-cost characteristics, compares predictions for the Malian cereals market to empirical evidence using 15 case studies, and then analyzes structure combinations.

Findings

Asymmetric scale between farmers and buyers; uncertainty in production, prices, policy, and contract enforcement; and quality and quantity debasement lead to selections of structures with high levels of control. Vertical and horizontal structures demonstrate a complementary relationship in certain core coordination roles, while exhibiting substitutability in the provision of other coordination activities. The marketing cooperative and marketing contract pairing is the most prevalent combination.

Research limitations/implications

The conceptual framework is useful for explaining the selection of coordination structures, and can be applied in other contexts to strengthen external validity.

Originality/value

The framework facilitates predictions and explanation of both VC and HC structures, with empirical application on a country and value chains receiving little attention in the literature.

Details

Journal of Agribusiness in Developing and Emerging Economies, vol. 8 no. 2
Type: Research Article
ISSN: 2044-0839

Keywords

Article
Publication date: 11 February 2019

Purnomo Yustianto, Robin Doss and Suhardi

The modelling landscape experiences a rich proliferation of modelling language, or metamodel. The emergence of cross-disciplinary disciplines, such as enterprise engineering and…

Abstract

Purpose

The modelling landscape experiences a rich proliferation of modelling language, or metamodel. The emergence of cross-disciplinary disciplines, such as enterprise engineering and service engineering, necessitates a multi-perspective approach to traverse the component from strategic level to technological aspect. This paper aims to find a unifying structure of metamodels introduced by academics and industries.

Design/methodology/approach

A grounded approach is taken to define the structure by collating the metamodels to form an emerging structure. Metamodels were collected from a literature survey from several interrelated disciplines: software engineering, system engineering, enterprise architecture, service engineering, business process management and financial accounting.

Findings

The result suggests seven stereotypes of metamodel, characterized by its label: goal, enterprise, business model, service, process, software and system. The aspect of “process” holds a central role in connecting all other aspect in the modelling continuum. Service engineering can be viewed as an alternative abstraction of enterprise engineering in containing the concepts of “business model”, “capability”, “value”, “interaction”, “process” and “software”.

Research limitations/implications

Metamodel collection was performed to emphasize on representativeness rather than comprehensiveness, in which old and unpopular metamodel were disregarded unless it offer unique characteristic not yet represented in the collection. Owing to its bottom-up approach, the paper is not intended to identify a gap in metamodel offering.

Originality/value

This paper produces a structure of metamodel landscape in a graphical format to illustrate correlation between metamodels in which evolutive patterns of metamodel proliferation can be observed. The produced structure can serve as map in metamodel continuum.

Details

Journal of Modelling in Management, vol. 14 no. 1
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 9 February 2023

Qasim Zaheer, Mir Majaid Manzoor and Muhammad Jawad Ahamad

The purpose of this article is to analyze the optimization process in depth, elaborating on the components of the entire process and the techniques used. Researchers have been…

Abstract

Purpose

The purpose of this article is to analyze the optimization process in depth, elaborating on the components of the entire process and the techniques used. Researchers have been drawn to the expanding trend of optimization since the turn of the century. The rate of research can be used to measure the progress and increase of this optimization procedure. This study is phenomenal to understand the optimization process and different algorithms in addition to their application by keeping in mind the current computational power that has increased the implementation for several engineering applications.

Design/methodology/approach

Two-dimensional analysis has been carried out for the optimization process and its approaches to addressing optimization problems, i.e. computational power has increased the implementation. The first section focuses on a thorough examination of the optimization process, its objectives and the development of processes. Second, techniques of the optimization process have been evaluated, as well as some new ones that have emerged to overcome the above-mentioned problems.

Findings

This paper provided detailed knowledge of optimization, several approaches and their applications in civil engineering, i.e. structural, geotechnical, hydraulic, transportation and many more. This research provided tremendous emerging techniques, where the lack of exploratory studies is to be approached soon.

Originality/value

Optimization processes have been studied for a very long time, in engineering, but the current computational power has increased the implementation for several engineering applications. Besides that, different techniques and their prediction modes often require high computational strength, such parameters can be mitigated with the use of different techniques to reduce computational cost and increase accuracy.

Details

Engineering Computations, vol. 40 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 January 2011

Uma Maheshwaraa Namasivayam and Carolyn Conner Seepersad

Solid freeform fabrication is particularly suitable for fabricating customized parts, but it has not been used for fabricating deployable structures that can be stored in a…

1446

Abstract

Purpose

Solid freeform fabrication is particularly suitable for fabricating customized parts, but it has not been used for fabricating deployable structures that can be stored in a compact configuration and deployed quickly and easily in the field. The purpose of this paper is to present a methodology for deploying flexible, freeform structure with lattice skins as the deploying mechanism.

Design/methodology/approach

A ground structure‐based topology optimization procedure is utilized, with a penalization scheme that encourages convergence to sets of thick lattice elements that are manufacturable and extremely thin lattice elements that are removed from the final structure.

Findings

A deployable wing is designed for a miniature unmanned aerial vehicle. A physical prototype of the optimal configuration is fabricated with selective laser sintering and compared with the virtual prototype. The proposed methodology results in a 78 percent improvement in deviations from the intended surface profile of the deployed part.

Originality/value

The results presented in the paper provide proof‐of‐concept for the use of lattice skins as a deployment mechanism. A topology optimization framework is also provided for designing these lattice skins. Potential applications include portable, camouflaged shelters and deployable aerial vehicles.

Details

Rapid Prototyping Journal, vol. 17 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 21000