Search results

1 – 10 of 700
To view the access options for this content please click here
Article
Publication date: 8 December 2017

Carin Rösiö and Jessica Bruch

The purpose of this paper is to explore activities, challenges, and suggest tactics for the design of industrial reconfigurable production systems that can easily adapt to…

Abstract

Purpose

The purpose of this paper is to explore activities, challenges, and suggest tactics for the design of industrial reconfigurable production systems that can easily adapt to changing market opportunities.

Design/methodology/approach

The paper synthesizes the empirical findings of seven case studies including 47 in-depth interviews at four manufacturing companies.

Findings

A conceptual production system design process and including activities that enables a long-term perspective considering reconfigurability is proposed. Additionally, critical challenges indicating that reconfigurable production system design is not a trivial issue but one that requires separate control and coordination are identified and tactics to overcome the challenges described.

Research limitations/implications

The authors propose a process for designing reconfigurable production systems that are better suited to adjust to future needs. The knowledge of reconfigurability from the reconfigurable manufacturing system literature is applied in the general production system literature field. This study contributes to a clearer picture of managerial challenges that need to be dealt with when designing a reconfigurable production system.

Practical implications

By clarifying key activities facilitating a long-term perspective in the design process and highlighting challenges and tactics for improvement, the findings are particularly relevant to production engineers and plant managers interested in increasing the ability to adapt to future changes through reconfigurability and improve the efficiency of their production system design process.

Originality/value

Although reconfigurable production systems are critical for the success of manufacturing companies, the process of designing such systems is not clear. This paper stretches this by giving a comprehensive picture of the production system design process and the activities that need to be considered to meet these challenges.

Details

Journal of Manufacturing Technology Management, vol. 29 no. 1
Type: Research Article
ISSN: 1741-038X

Keywords

To view the access options for this content please click here
Article
Publication date: 5 February 2018

Ann-Louise Andersen, Thomas Ditlev Brunoe, Kjeld Nielsen and Mads Bejlegaard

The purpose of this paper is to present a decisions support tool that can be applied in initial stages of design, for evaluating the investment feasibility of changeable…

Abstract

Purpose

The purpose of this paper is to present a decisions support tool that can be applied in initial stages of design, for evaluating the investment feasibility of changeable and reconfigurable manufacturing design concepts, based on future demand predictions and their uncertainties. A quantitative model is proposed, which evaluates the discounted value of capital and operating costs of changeable manufacturing design concepts, based on essential characteristics regarding their type and extent of changeability.

Design/methodology/approach

Quantitative empirical modeling is applied, where model conceptualization, validation, and implementation are central elements, using two Danish manufacturing companies as cases.

Findings

The applicability of the model is demonstrated in the two case companies, highlighting differences in type, extent, and level of feasible changeability, as a result of differences in product and production characteristics.

Research limitations/implications

Further studies of changeability implementation should be conducted across industrial fields in order to generalize findings.

Practical implications

There is currently limited support for the conceptual design phase of changeable and reconfigurable manufacturing, where critical decisions regarding type, extent, and level of changeability must be made, regardless of high degrees of uncertainty about future demand scenarios.

Originality/value

This paper expands previous research on design for changeability and reconfigurability, by explicitly considering changeability as a capability that can be enabled in various ways for various purposes in different industrial contexts. The proposed model and the case implementations provide important knowledge on the transition toward changeability in industry.

Details

Journal of Manufacturing Technology Management, vol. 29 no. 3
Type: Research Article
ISSN: 1741-038X

Keywords

To view the access options for this content please click here
Article
Publication date: 5 April 2013

Shaniel Davrajh and Glen Bright

Production of a high variety of products introduces complexities in the quality processes involved in a manufacturing system. Previous methods of quality assurance and…

Abstract

Purpose

Production of a high variety of products introduces complexities in the quality processes involved in a manufacturing system. Previous methods of quality assurance and control are not sufficient to manage the quality characteristics that are significant to each customer. Research into quality management for these environments has been isolated and segmented. No framework exists to holistically manage product quality within an unstable manufacturing environment. This paper seeks to propose a method of holistically managing product quality in a manufacturing environment with high customer input and product variety. The development of a reconfigurable inspection apparatus is discussed as a technological requirement for performing the quality control aspect of the management system.

Design/methodology/approach

The quality requirements of modern manufacturing systems were established. The required flow of information for an advanced quality management system was proposed and compared to the information flow in a traditional quality management system. The developed reconfigurable inspection apparatus was tested by performing an inspection of a product configuration within a part family of torches. Commercial products were used for the construction of the apparatus, including the electrical and software aspects. A commercially available simulation package was used to simulate the effects of a random customer order on production flow whilst implementing the developed apparatus.

Findings

Modular inspection equipment would prove essential to the implementation of quality control when considering advanced manufacturing environments. An overall management system is also needed for the verification of product quality as per individual customer requirements. Quality needs to be integrated as per TQM principles.

Research limitations/implications

Traditional quality control tools may not always be applicable for unstable market demand. The research indicated the required progression of quality systems to successfully manage the quality for advanced manufacturing. The widespread availability of commercial components for the inspection apparatus verified the shift in supplier focus to meet the needs of shifting manufacturing requirements.

Practical implications

The proposed approach to assure and control quality, as well as the researched inspection apparatus, provided the capability of being implemented in a manufacturing environment that involves production of a variety of products as opposed to being limited to one part family. The use of modular mechanical, electrical and software components will ease the implementation of reconfigurable inspection stations into existing manufacturing setups.

Originality/value

Research indicated that quality systems need to be further developed for assuring and controlling product quality of products with high customer input. No system existed that could holistically consider the quality requirements of a product from design to delivery.

Details

Assembly Automation, vol. 33 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

To view the access options for this content please click here
Article
Publication date: 9 August 2021

Rajesh Pansare, Gunjan Yadav and Madhukar R. Nagare

Uncertainties in manufacturing and changing customer demands force manufacturing industries to adopt new strategies, such as the reconfigurable manufacturing system (RMS)…

Abstract

Purpose

Uncertainties in manufacturing and changing customer demands force manufacturing industries to adopt new strategies, such as the reconfigurable manufacturing system (RMS). To improve the implementation and performance of RMS, it is necessary to review the available literature and identify future trends in this field. This paper aims to analyze existing literature and to see trends in RMS-related research.

Design/methodology/approach

The systematic literature review and analysis of RMS-related research papers from 1999 to 2020 is carried out in this literature. The selected studies are analyzed based on the year of publication, journals, publishers, active authors, research design, countries, enablers, barriers, performance evaluation parameters and universities.

Findings

After the analysis of selected RMS-related research papers, the top countries, universities, journals, publishers and authors are identified in this domain. Research themes and trends in research are identified in this study. Besides, it has been noted that there is a need for further research in this domain and for the creation of a generalized framework that can guide researchers and practitioners to increase RMS adoption.

Practical implications

Research insights, guidance and observations from this paper are provided to RMS-related researchers and practitioners. Important research gaps are identified in this study, which can provide direction for future research and trends in RMS research.

Originality/value

The study presented focuses mainly on the method of collecting, organizing, capturing, interpreting and analyzing data to provide more insight into RMS to identify future trends in research.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

To view the access options for this content please click here
Article
Publication date: 30 July 2019

Kamal Khanna and Rakesh Kumar

The purpose of this paper is to present an organized review of existing research on reconfigurable manufacturing system (RMS). The paper considers majority of the…

Abstract

Purpose

The purpose of this paper is to present an organized review of existing research on reconfigurable manufacturing system (RMS). The paper considers majority of the prominent research articles in the domain of RMS published ever since RMS was envisaged in 1997.

Design/methodology/approach

The paper systematically reviews, classifies and analyses the published literature on postulations and design of RMSs. The general observations from the literature and research gaps recognized thereon are highlighted at the end of each section/sub-section.

Findings

The paper reveals important aspects related to RMS research since its inception. It also recognizes the areas of RMS research requiring more focus. The study also highlights open issues and future directions for further research.

Practical implications

The literature in the domain of RMS has so far been narrow. This paper reviews the prominent research in this field and presents an overview of its conceptual developments and various mathematical models for the RMS design and its optimization so far developed by the researchers. Further, manufacturing advancements and future directions have also been proposed for the efficient execution of RMS paradigm in manufacturing industries.

Originality/value

The paper provides an organized listing of published research work in the field of RMS. This work will provide an insight to the researchers, practitioners and others related directly or indirectly to this field to develop and understand better strategies for supervising and controlling the smooth implementation of RMS.

Details

Benchmarking: An International Journal, vol. 26 no. 8
Type: Research Article
ISSN: 1463-5771

Keywords

Content available
Article
Publication date: 14 June 2021

Vennan Sibanda, Khumbulani Mpofu and John Trimble

In manufacturing, dedicated machine tools and flexible machine tools are failing to satisfy the ever-changing manufacturing demands of short life cycles and dynamic nature…

Abstract

Purpose

In manufacturing, dedicated machine tools and flexible machine tools are failing to satisfy the ever-changing manufacturing demands of short life cycles and dynamic nature of products. These machines are limited when new product designs are introduced. The solution lies in developing responsive machines that can be adjusted or be changed functionally when these change requirements arise. These machines are reconfigurable machines which are becoming the new focus, as they rapidly respond to product variety and volume changes. A sheet metal working machine known as a reconfigurable guillotine shear and bending press machine (RGS&BPM) has been developed. The purpose of this paper is to present a methodology, function-oriented design approach (FODA), which was developed for the design of the RGS&BPM.

Design/methodology/approach

The design of the machine is based on the six principles of reconfigurable manufacturing systems (RMSs), namely, modularity, scalability integrability, convertibility, diagnosability and customisability. The methodology seeks to optimise the design process of the RGS&BPM through a design of modules that make up the machine, enable its conversion and reconfiguration. The FODA is focussed on function identification to select the operational function required. Two main functions are recognised for the machine, these being cutting and bending; hence, the design revolves around these two and reconfigurability.

Findings

The developed design methodology was tested in the design of a prototype for the reconfigurable guillotine shear and bending press machine. The prototype is currently being manufactured and will be subjected to functional tests once completed. This paper is being presented not only to present the methodology by to show and highlight its practical applicability, as the prototype manufacturers have been enthusiastic about this new approach.

Research limitations/implications

The research was limited to the design methodology for the RGS&BPM, the machine which has been designed to completion using this methodology, with prototype being manufactured.

Practical implications

This study presents critical steps and considerations in the development of reconfigurable machines. The main thrust being to explore the best possibility of developing the machines with dual functionality that will assist in availing the technology to manufacturer. As the machine has been development, the success of the design can be directly attributed to the FODA methodology, among other contributing factors. It also highlights the significance of the principles of RMS in reconfigurable machine design.

Social implications

The RGS&BM machine is an answer for the small-to-medium enterprises (SMEs), as the machine replaces two machines with one, and the methodology ensures its affordable design. It contributes immensely to the machine availability by eliminating trial and error approaches.

Originality/value

This study presents a new approach to the design of reconfigurable dual machines using principles of RMS. As the targeted market is the SME, it is not limited to that as any entrepreneur may use the machine to their advantage. The design methodology presented contributes to the body of knowledge in dual reconfigurable machine tool design.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

To view the access options for this content please click here
Article
Publication date: 11 April 2018

Ann-Louise Andersen, Jesper Kranker Larsen, Thomas Ditlev Brunoe, Kjeld Nielsen and Christopher Ketelsen

During design of reconfigurable manufacturing systems, manufacturing companies need to select and implement the right enablers of reconfigurability in accordance with the…

Abstract

Purpose

During design of reconfigurable manufacturing systems, manufacturing companies need to select and implement the right enablers of reconfigurability in accordance with the specific requirements being present in the manufacturing setting. Therefore, the purpose of this paper is to investigate enablers of reconfigurability in terms of their importance in industry, current level of implementation in industry, and significant differences in their implementation and criticality across different manufacturing settings.

Design/methodology/approach

A questionnaire survey is conducted, in order to provide generalizable empirical evidence across various industries and manufacturing types.

Findings

The findings indicate that the level of implementation of the reconfigurability enablers is rudimentary, while their criticality is perceived higher than the current level of implementation. Moreover, significant differences regarding implementation and criticality of mobility, scalability, and convertibility were found for companies with varying degrees of manual work, make-to-stock production, and varying production volume, industry type and organization size.

Research limitations/implications

Main limitations of the research cover the relatively small sample size and non-random sampling method applied, primarily limited to one country, which could be increased to further extent the findings reported in this paper.

Practical implications

The findings indicate that the importance and implementation of reconfigurability enablers is contingent on the manufacturing setting. Thus, the research presented in this paper provides valuable knowledge in regard to aiding a paradigm shift in industry and help companies design manufacturing systems with the right reconfigurability enablers.

Originality/value

This paper expands research on manufacturing system design for changeability and reconfigurability, by explicitly considering these as capabilities that can be enabled in various ways for various purposes in different manufacturing contexts.

Details

Journal of Manufacturing Technology Management, vol. 29 no. 6
Type: Research Article
ISSN: 1741-038X

Keywords

To view the access options for this content please click here
Article
Publication date: 30 December 2019

Vennan Sibanda, Khumbulani Mpofu, John Trimble and Mufaro Kanganga

Reconfigurable machines tools (RMTs) are gaining momentum as the new solutions to customised products in the manufacturing world. The driving force, among others, behind…

Abstract

Purpose

Reconfigurable machines tools (RMTs) are gaining momentum as the new solutions to customised products in the manufacturing world. The driving force, among others, behind these machines is the part envelope and the part family of products that they can produce. The purpose of this paper is to propose a new class of RMT known as a reconfigurable guillotine shear and bending press machine (RGS&BPM). A part family of products that this machine can produce is developed using hierarchical clustering methodologies. The development of these part families is guided by the relationship of the parts in the family in terms of complexity and geometry.

Design/methodology/approach

Part families cannot be developed in isolation, but that process has to incorporate the machine modules used in the reconfiguration process for producing the parts. Literature was reviewed, and group technology principles explored, to develop a concept that can be used to develop the part families. Matrices were manipulated to generate part families, and this resulted in the development of a dendrogram of six possible part families. A software with a graphic user interface for manipulation was also developed to help generate part families and machine modules. The developed concept will assist in the development of a machine by first developing the part family of products and machine modules required in the variable production process.

Findings

The developed concepts assist in the development of a machine by first developing the part family of products and machine modules required in the variable production process. The development of part families for the RGS&BPM is key to developing the machine work envelope and modules to carry out the work. This work has been presented to demonstrate the importance of machine development in conjunction with a part family of products that the machine will produce. The paper develops an approach to manufacturing where part families of products are developed prior to developing the machine. The families of products are then used to develop modules that enable the manufacture of the parts and subsequently the size of the machine.

Research limitations/implications

The research was limited to the development of part families for a new RGS&BPM, which is still under development.

Practical implications

The study reflects the development of reconfigurable machines as a solution to manufacturing challenges in terms of group technology approaches adopted in the design phase. It also highlights the significance of the concepts in the reconfigurable machine tool design. The part families define the machine work envelop and its reconfiguration capability.

Social implications

The success of the research will usher an alternative to smaller players in sheet metal work. It will contribute to the easy development of the machine that will bridge the high cost of machine tools.

Originality/value

The study contributes to the new approach in sheet metal manufacturing where dedicated machines may be substituted by a highly flexible reconfigurable machine that has a dual operation, making the investment for small to medium enterprises affordable. It also contributes to the body of knowledge in reconfigurable machine development and the framework for such activities, especially in developing countries.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

To view the access options for this content please click here
Article
Publication date: 21 October 2013

Carin Rösiö and Kristina Säfsten

– The purpose of this paper is to explore theoretical and practical challenges to achieve reconfigurable production system designs.

Downloads
1347

Abstract

Purpose

The purpose of this paper is to explore theoretical and practical challenges to achieve reconfigurable production system designs.

Design/methodology/approach

The empirical material of this paper includes a multiple-case study with an embedded design (Yin) including four cases, where each case represents a production system design project. The consideration of reconfigurability and its characteristics in the production system design projects was studied. To enhance validity, two real-time studies were combined with two retrospective studies (Leonard-Barton).

Findings

For more than a decade foresight reports have pointed out the need for responsiveness to change through reconfigurability in production system design. In order to achieve reconfigurable production systems, three challenges were identified: to use a structured design methodology, to gain knowledge in reconfigurability and its characteristics, and to include the reconfigurability knowledge in a structured design methodology. Still there is no comprehensive support available for reconfigurability in the production system design process.

Research limitations/implications

Limitations are mostly related to the chosen methodology approach, and additional empirical studies to establish generic results are required.

Practical implications

By combining knowledge from the production system design field with the reconfigurable manufacturing system field a potential of meeting identified challenges is pointed out.

Originality/value

This paper adds to current knowledge by pointing out three main challenges to achieving reconfigurable production systems. The paper also contributes with ideas on how to respond to these challenges.

Details

Journal of Manufacturing Technology Management, vol. 24 no. 7
Type: Research Article
ISSN: 1741-038X

Keywords

To view the access options for this content please click here
Article
Publication date: 15 June 2010

Chao Lv, AiPing Li and LiYun Xu

The purpose of this paper is to research the impact of hybrid series‐parallel and parallel‐series system configurations on system performances based on system reliability…

Downloads
535

Abstract

Purpose

The purpose of this paper is to research the impact of hybrid series‐parallel and parallel‐series system configurations on system performances based on system reliability and to develop a configuration model to meet the requirement of reconfigurable manufacturing system (RMS).

Design/methodology/approach

Based on the criterion of system reliability, a RMS configuration model is presented – the hybrid parallel‐series model with waiting system characteristics. The configuration model is evaluated from reliability, productivity, and cost by combining system engineering theory, Boolean algebra methodology with statistical analysis theory. The model reliability has been used to ameliorate by adopting the integrated algorithm based on Shrama and Misra optimization algorithm.

Findings

The need for application of this method and model – some constraints must be limited, the hybrid parallel‐series configuration is superior and the integrated algorithm is effective to RMS system configuration.

Research limitations/implications

Cost constraints, equipment weight constraints, and function independency of equipment are main limitations.

Practical implications

The model and method have been used to ameliorate the reconfigurable automobile parts product line in SH automobile motor company of Shanghai. The operation result illustrates the validity of this configuration model and algorithm.

Originality/value

The new RMSs configuration model has been proposed. The new algorithm is proposed to ameliorate and optimize a reconfigurable product line with the integrated algorithm based on Shrama and Misra algorithm. The actual running effect is significant.

Details

Kybernetes, vol. 39 no. 6
Type: Research Article
ISSN: 0368-492X

Keywords

1 – 10 of 700