Search results

1 – 10 of 88
Article
Publication date: 9 November 2021

Shilpa B L and Shambhavi B R

Stock market forecasters are focusing to create a positive approach for predicting the stock price. The fundamental principle of an effective stock market prediction is not only…

Abstract

Purpose

Stock market forecasters are focusing to create a positive approach for predicting the stock price. The fundamental principle of an effective stock market prediction is not only to produce the maximum outcomes but also to reduce the unreliable stock price estimate. In the stock market, sentiment analysis enables people for making educated decisions regarding the investment in a business. Moreover, the stock analysis identifies the business of an organization or a company. In fact, the prediction of stock prices is more complex due to high volatile nature that varies a large range of investor sentiment, economic and political factors, changes in leadership and other factors. This prediction often becomes ineffective, while considering only the historical data or textural information. Attempts are made to make the prediction more precise with the news sentiment along with the stock price information.

Design/methodology/approach

This paper introduces a prediction framework via sentiment analysis. Thereby, the stock data and news sentiment data are also considered. From the stock data, technical indicator-based features like moving average convergence divergence (MACD), relative strength index (RSI) and moving average (MA) are extracted. At the same time, the news data are processed to determine the sentiments by certain processes like (1) pre-processing, where keyword extraction and sentiment categorization process takes place; (2) keyword extraction, where WordNet and sentiment categorization process is done; (3) feature extraction, where Proposed holoentropy based features is extracted. (4) Classification, deep neural network is used that returns the sentiment output. To make the system more accurate on predicting the sentiment, the training of NN is carried out by self-improved whale optimization algorithm (SIWOA). Finally, optimized deep belief network (DBN) is used to predict the stock that considers the features of stock data and sentiment results from news data. Here, the weights of DBN are tuned by the new SIWOA.

Findings

The performance of the adopted scheme is computed over the existing models in terms of certain measures. The stock dataset includes two companies such as Reliance Communications and Relaxo Footwear. In addition, each company consists of three datasets (a) in daily option, set start day 1-1-2019 and end day 1-12-2020, (b) in monthly option, set start Jan 2000 and end Dec 2020 and (c) in yearly option, set year 2000. Moreover, the adopted NN + DBN + SIWOA model was computed over the traditional classifiers like LSTM, NN + RF, NN + MLP and NN + SVM; also, it was compared over the existing optimization algorithms like NN + DBN + MFO, NN + DBN + CSA, NN + DBN + WOA and NN + DBN + PSO, correspondingly. Further, the performance was calculated based on the learning percentage that ranges from 60, 70, 80 and 90 in terms of certain measures like MAE, MSE and RMSE for six datasets. On observing the graph, the MAE of the adopted NN + DBN + SIWOA model was 91.67, 80, 91.11 and 93.33% superior to the existing classifiers like LSTM, NN + RF, NN + MLP and NN + SVM, respectively for dataset 1. The proposed NN + DBN + SIWOA method holds minimum MAE value of (∼0.21) at learning percentage 80 for dataset 1; whereas, the traditional models holds the value for NN + DBN + CSA (∼1.20), NN + DBN + MFO (∼1.21), NN + DBN + PSO (∼0.23) and NN + DBN + WOA (∼0.25), respectively. From the table, it was clear that the RMSRE of the proposed NN + DBN + SIWOA model was 3.14, 1.08, 1.38 and 15.28% better than the existing classifiers like LSTM, NN + RF, NN + MLP and NN + SVM, respectively, for dataset 6. In addition, he MSE of the adopted NN + DBN + SIWOA method attain lower values (∼54944.41) for dataset 2 than other existing schemes like NN + DBN + CSA(∼9.43), NN + DBN + MFO (∼56728.68), NN + DBN + PSO (∼2.95) and NN + DBN + WOA (∼56767.88), respectively.

Originality/value

This paper has introduced a prediction framework via sentiment analysis. Thereby, along with the stock data and news sentiment data were also considered. From the stock data, technical indicator based features like MACD, RSI and MA are extracted. Therefore, the proposed work was said to be much appropriate for stock market prediction.

Details

Kybernetes, vol. 52 no. 3
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 5 July 2021

Rajakumar B.R., Gokul Yenduri, Sumit Vyas and Binu D.

This paper aims to propose a new assessment system module for handling the comprehensive answers written through the answer interface.

Abstract

Purpose

This paper aims to propose a new assessment system module for handling the comprehensive answers written through the answer interface.

Design/methodology/approach

The working principle is under three major phases: Preliminary semantic processing: In the pre-processing work, the keywords are extracted for each answer given by the course instructor. In fact, this answer is actually considered as the key to evaluating the answers written by the e-learners. Keyword and semantic processing of e-learners for hierarchical clustering-based ontology construction: For each answer given by each student, the keywords and the semantic information are extracted and clustered (hierarchical clustering) using a new improved rider optimization algorithm known as Rider with Randomized Overtaker Update (RR-OU). Ontology matching evaluation: Once the ontology structures are completed, a new alignment procedure is used to find out the similarity between two different documents. Moreover, the objects defined in this work focuses on “how exactly the matching process is done for evaluating the document.” Finally, the e-learners are classified based on their grades.

Findings

On observing the outcomes, the proposed model shows less relative mean squared error measure when weights were (0.5, 0, 0.5), and it was 71.78% and 16.92% better than the error values attained for (0, 0.5, 0.5) and (0.5, 0.5, 0). On examining the outcomes, the values of error attained for (1, 0, 0) were found to be lower than the values when weights were (0, 0, 1) and (0, 1, 0). Here, the mean absolute error (MAE) measure for weight (1, 0, 0) was 33.99% and 51.52% better than the MAE value for weights (0, 0, 1) and (0, 1, 0). On analyzing the overall error analysis, the mean absolute percentage error of the implemented RR-OU model was 3.74% and 56.53% better than k-means and collaborative filtering + Onto + sequential pattern mining models, respectively.

Originality/value

This paper adopts the latest optimization algorithm called RR-OU for proposing a new assessment system module for handling the comprehensive answers written through the answer interface. To the best of the authors’ knowledge, this is the first work that uses RR-OU-based optimization for developing a new ontology alignment-based online assessment of e-learners.

Details

Kybernetes, vol. 51 no. 2
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 22 July 2021

Ranjeet Yadav and Ashutosh Tripathi

Multiple input multiple-output (MIMO) has emerged as one among the many noteworthy technologies in recent wireless applications because of its powerful ability to improve…

Abstract

Purpose

Multiple input multiple-output (MIMO) has emerged as one among the many noteworthy technologies in recent wireless applications because of its powerful ability to improve bandwidth efficiency and performance, i.e. through developing its unique spatial multiplexing capability and spatial diversity gain. For carrying out an enhanced communication in next-generation networks, the MIMO and orthogonal frequency division multiple systems were combined that facilitate the spatial multiplexing on resource blocks (RBs) based on time-frequency. This paper aims to propose a novel approach for maximizing the throughput of cell-edge users and cell-center users.

Design/methodology/approach

In this work, the specified multi-objective function is defined as the single objective function, which is solved by the introduction of a new improved algorithm as well. This optimization problem can be resolved by the fine-tuning of certain parameters such as assigned power for RB, cell-center user, cell-edge user and RB allocation. The fine-tuning of parameters is attained by a new improved Lion algorithm (LA), termed as Lion with new cub generation (LA-NCG) model. Finally, the betterment of the presented approach is validated over the existing models in terms of signal to interference plus noise ratio, throughput and so on.

Findings

On examining the outputs, the adopted LA-NCG model for 4BS was 66.67%, 66.67% and 20% superior to existing joint processing coordinated multiple point-based dual decomposition method (JC-DDM), fractional programming (FP) and LA models. In addition, the throughput of conventional JC-DDM, FP and LA models lie at a range of 10, 45 and 35, respectively, at the 100th iteration. However, the presented LA-NCG scheme accomplishes a higher throughput of 58. Similarly, the throughput of the adopted scheme observed for 8BS was 59.68%, 44.19% and 9.68% superior to existing JC-DDM, FP and LA models. Thus, the enhancement of the adopted LA-NCG model has been validated effectively from the attained outcomes.

Originality/value

This paper adopts the latest optimization algorithm called LA-NCG to establish a novel approach for maximizing the throughput of cell-edge users and cell-center users. This is the first that work uses LA-NCG-based optimization that assists in fine-tuning certain parameters such as assigned power for RB, cell-center user, cell-edge user and RB allocation.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 8 January 2021

Ashok Naganath Shinde, Sanjay L. Nalbalwar and Anil B. Nandgaonkar

In today’s digital world, real-time health monitoring is becoming a most important challenge in the field of medical research. Body signals such as electrocardiogram (ECG)…

Abstract

Purpose

In today’s digital world, real-time health monitoring is becoming a most important challenge in the field of medical research. Body signals such as electrocardiogram (ECG), electromyogram and electroencephalogram (EEG) are produced in human body. This continuous monitoring generates huge count of data and thus an efficient method is required to shrink the size of the obtained large data. Compressed sensing (CS) is one of the techniques used to compress the data size. This technique is most used in certain applications, where the size of data is huge or the data acquisition process is too expensive to gather data from vast count of samples at Nyquist rate. This paper aims to propose Lion Mutated Crow search Algorithm (LM-CSA), to improve the performance of the LMCSA model.

Design/methodology/approach

A new CS algorithm is exploited in this paper, where the compression process undergoes three stages: designing of stable measurement matrix, signal compression and signal reconstruction. Here, the compression process falls under certain working principle, and is as follows: signal transformation, computation of Θ and normalization. As the main contribution, the theta value evaluation is proceeded by a new “Enhanced bi-orthogonal wavelet filter.” The enhancement is given under the scaling coefficients, where they are optimally tuned for processing the compression. However, the way of tuning seems to be the great crisis, and hence this work seeks the strategy of meta-heuristic algorithms. Moreover, a new hybrid algorithm is introduced that solves the above mentioned optimization inconsistency. The proposed algorithm is named as “Lion Mutated Crow search Algorithm (LM-CSA),” which is the hybridization of crow search algorithm (CSA) and lion algorithm (LA) to enhance the performance of the LM-CSA model.

Findings

Finally, the proposed LM-CSA model is compared over the traditional models in terms of certain error measures such as mean error percentage (MEP), symmetric mean absolute percentage error (SMAPE), mean absolute scaled error, mean absolute error (MAE), root mean square error, L1-norm and L2-normand infinity-norm. For ECG analysis, under bior 3.1, LM-CSA is 56.6, 62.5 and 81.5% better than bi-orthogonal wavelet in terms of MEP, SMAPE and MAE, respectively. Under bior 3.7 for ECG analysis, LM-CSA is 0.15% better than genetic algorithm (GA), 0.10% superior to particle search optimization (PSO), 0.22% superior to firefly (FF), 0.22% superior to CSA and 0.14% superior to LA, respectively, in terms of L1-norm. Further, for EEG analysis, LM-CSA is 86.9 and 91.2% better than the traditional bi-orthogonal wavelet under bior 3.1. Under bior 3.3, LM-CSA is 91.7 and 73.12% better than the bi-orthogonal wavelet in terms of MAE and MEP, respectively. Under bior 3.5 for EEG, L1-norm of LM-CSA is 0.64% superior to GA, 0.43% superior to PSO, 0.62% superior to FF, 0.84% superior to CSA and 0.60% better than LA, respectively.

Originality/value

This paper presents a novel CS framework using LM-CSA algorithm for EEG and ECG signal compression. To the best of the authors’ knowledge, this is the first work to use LM-CSA with enhanced bi-orthogonal wavelet filter for enhancing the CS capability as well reducing the errors.

Details

International Journal of Pervasive Computing and Communications, vol. 18 no. 5
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 29 July 2020

Asha Sukumaran and Thomas Brindha

The humans are gifted with the potential of recognizing others by their uniqueness, in addition with more other demographic characteristics such as ethnicity (or race), gender and…

Abstract

Purpose

The humans are gifted with the potential of recognizing others by their uniqueness, in addition with more other demographic characteristics such as ethnicity (or race), gender and age, respectively. Over the decades, a vast count of researchers had undergone in the field of psychological, biological and cognitive sciences to explore how the human brain characterizes, perceives and memorizes faces. Moreover, certain computational advancements have been developed to accomplish several insights into this issue.

Design/methodology/approach

This paper intends to propose a new race detection model using face shape features. The proposed model includes two key phases, namely. (a) feature extraction (b) detection. The feature extraction is the initial stage, where the face color and shape based features get mined. Specifically, maximally stable extremal regions (MSER) and speeded-up robust transform (SURF) are extracted under shape features and dense color feature are extracted as color feature. Since, the extracted features are huge in dimensions; they are alleviated under principle component analysis (PCA) approach, which is the strongest model for solving “curse of dimensionality”. Then, the dimensional reduced features are subjected to deep belief neural network (DBN), where the race gets detected. Further, to make the proposed framework more effective with respect to prediction, the weight of DBN is fine tuned with a new hybrid algorithm referred as lion mutated and updated dragon algorithm (LMUDA), which is the conceptual hybridization of lion algorithm (LA) and dragonfly algorithm (DA).

Findings

The performance of proposed work is compared over other state-of-the-art models in terms of accuracy and error performance. Moreover, LMUDA attains high accuracy at 100th iteration with 90% of training, which is 11.1, 8.8, 5.5 and 3.3% better than the performance when learning percentage (LP) = 50%, 60%, 70%, and 80%, respectively. More particularly, the performance of proposed DBN + LMUDA is 22.2, 12.5 and 33.3% better than the traditional classifiers DCNN, DBN and LDA, respectively.

Originality/value

This paper achieves the objective detecting the human races from the faces. Particularly, MSER feature and SURF features are extracted under shape features and dense color feature are extracted as color feature. As a novelty, to make the race detection more accurate, the weight of DBN is fine tuned with a new hybrid algorithm referred as LMUDA, which is the conceptual hybridization of LA and DA, respectively.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 13 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 6 November 2020

Mahesh P. Wankhade and KC Jondhale

In the past few decades, the wireless sensor network (WSN) has become the more vital one with the involvement of the conventional WSNs and wireless multimedia sensor networks…

134

Abstract

Purpose

In the past few decades, the wireless sensor network (WSN) has become the more vital one with the involvement of the conventional WSNs and wireless multimedia sensor networks (WMSNs). The network that is composed of low-power, small-size, low-cost sensors is said to be WSN. Here, the communication information is handled using the multiple hop and offers only a simple sensing data, such as humidity, temperature and so on, whereas WMSNs are referred as the distributed sensing networks that are composed of video cameras, which contain the sector sense area. These WMSNs can send, receive and process the video information data, which is more intensive and complicated by wrapping with wireless transceiver. The WSNs and the WMSNs are varied in terms of their characteristic of turnablity and directivity.

Design/methodology/approach

The main intention of this paper is to maximize the lifetime of network with reduced energy consumption by using an advanced optimization algorithm. The optimal transmission radius is achieved by optimizing the system parameter to transmit the sensor information to the consequent sensor nodes, which are contained within the range. For this optimal selection, this paper proposes a new modified lion algorithm (LA), the so-called cub pool-linked lion algorithm (CLA). The next contribution is on the optimal selection of cluster head (CH) by the proposed algorithm. Finally, the performance of proposed model is validated and compared over the other traditional methods in terms of network energy, convergence rate and alive nodes.

Findings

The proposed model's cost function relies in the range of 74–78. From the result, it is clear that at sixth iteration, the proposed model’s performance attains less cost function, that is, 11.14, 9.78, 7.26, 4.49 and 4.13% better than Genetic Algorithm (GA), Dragonfly Algorithm (DA), Particle Swarm Optimization (PSO), Glowworm Swarm Optimization (GSO) and Firefly (FF), correspondingly. The performance of the proposed model at eighth iteration is 14.15, 7.96, 4.36, 7.73, 7.38 and 3.39% superior to GA, DA, PSO, GSO, FF and LA, correspondingly with less convergence rate.

Originality/value

This paper presents a new optimization technique for increasing the network lifetime with reduced energy consumption. This is the first work that utilizes CLA for optimization problems.

Details

Data Technologies and Applications, vol. 55 no. 1
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 22 July 2021

Sneha Patil, Mahesh Goudar and Ravindra Kharadkar

For decades, continuous research work is going on to maximize the power harvested from the sun; however, there is only a limited analysis on exploiting the microwatt output power…

Abstract

Purpose

For decades, continuous research work is going on to maximize the power harvested from the sun; however, there is only a limited analysis on exploiting the microwatt output power from indoor lightings. Microelectronic system has power demand in the µW range, and therefore, indoor photovoltaics would be appropriate for micro-energy harvesting appliances. “Energy harvesting is defined as the transfer process by which energy source is acquired from the ambient energy, stored in energy storage element and powered to the target systems”. The theory of energy harvesting is: gathering energy from surroundings and offering technological solutions such as solar energy harvesting, wind energy collection and vibration energy harvesting. “The solar cell or photovoltaic cell (PV), is a device that converts light into electric current using the photoelectric effect”. Factors such as light source, temperature, circuit connection, light intensity, angle and height can manipulate the functions of PV cells. Among these, the most noticeable factor is the light intensity that has a major impact on the operations of solar panels.

Design/methodology/approach

This paper aims to design an enhanced prediction model on illuminance or irradiance by an optimized artificial neural network (ANN). The input attributes or the features considered here are temperatures, maxim, TSL, VI, short circuit current, open-circuit voltage, maximum power point (MPP) voltage, MPP current and MPP power, respectively. To enhance the performance of the prediction model, the weights of ANN are optimally tuned by a new self-improved brain storm optimization (SI-BSO) model.

Findings

The superiority of the implemented work is compared and proved over the conventional models in terms of error analysis and prediction analysis. Accordingly, the presented approach was analysed and its superiority was proved over other conventional schemes such as ANN, ANN-Levenberg–Marquardt (LM), adaptive-network-based fuzzy inference system (ANFIS) and brainstorm optimization (BSO). In addition, analysis was held with respect to error measures such as mean absolute relative error (MARE), mean square root error (MSRE), mean absolute error and mean absolute percentage error. Moreover, prediction analysis was also performed that revealed the betterment of the presented model. More particularly, the proposed ANN + SI-BSO model has attained minimal error for all measures when compared to the existing schemes. More particularly, on considering the MARE, the adopted model for data set 1 was 23.61%, 48.12%, 79.39% and 90.86% better than ANN, ANN-LM, ANFIS and BSO models, respectively. Similarly, on considering data set 2, the MSRE of the implemented model was 99.87%, 70.69%, 99.57% and 94.74% better than ANN, ANN-LM, ANFIS and BSO models, respectively. Thus, the enhancement of the presented ANN + SI-BSO scheme has been validated effectively.

Originality/value

This work has established an improved illuminance/irradiance prediction model using the optimization concept. Here, the attributes, namely, temperature, maxim, TSL, VI, Isc, Voc, Vmpp, Impp and Pmpp were given as input to ANN, in which the weights were chosen optimally. For the optimal selection of weights, a novel ANN + SI-BSO model was established, which was an improved version of the BSO model.

Details

Journal of Engineering, Design and Technology , vol. 20 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 6 August 2021

A. Valli Bhasha and B.D. Venkatramana Reddy

The problems of Super resolution are broadly discussed in diverse fields. Rather than the progression toward the super resolution models for real-time images, operating…

Abstract

Purpose

The problems of Super resolution are broadly discussed in diverse fields. Rather than the progression toward the super resolution models for real-time images, operating hyperspectral images still remains a challenging problem.

Design/methodology/approach

This paper aims to develop the enhanced image super-resolution model using “optimized Non-negative Structured Sparse Representation (NSSR), Adaptive Discrete Wavelet Transform (ADWT), and Optimized Deep Convolutional Neural Network”. Once after converting the HR images into LR images, the NSSR images are generated by the optimized NSSR. Then the ADWT is used for generating the subbands of both NSSR and HRSB images. The residual image with this information is obtained by the optimized Deep CNN. All the improvements on the algorithms are done by the Opposition-based Barnacles Mating Optimization (O-BMO), with the objective of attaining the multi-objective function concerning the “Peak Signal-to-Noise Ratio (PSNR), and Structural similarity (SSIM) index”. Extensive analysis on benchmark hyperspectral image datasets shows that the proposed model achieves superior performance over typical other existing super-resolution models.

Findings

From the analysis, the overall analysis of the suggested and the conventional super resolution models relies that the PSNR of the improved O-BMO-(NSSR+DWT+CNN) was 38.8% better than bicubic, 11% better than NSSR, 16.7% better than DWT+CNN, 1.3% better than NSSR+DWT+CNN, and 0.5% better than NSSR+FF-SHO-(DWT+CNN). Hence, it has been confirmed that the developed O-BMO-(NSSR+DWT+CNN) is performing well in converting LR images to HR images.

Originality/value

This paper adopts a latest optimization algorithm called O-BMO with optimized Non-negative Structured Sparse Representation (NSSR), Adaptive Discrete Wavelet Transform (ADWT) and Optimized Deep Convolutional Neural Network for developing the enhanced image super-resolution model. This is the first work that uses O-BMO-based Deep CNN for image super-resolution model enhancement.

Article
Publication date: 18 March 2021

Pandiaraj A., Sundar C. and Pavalarajan S.

Up to date development in sentiment analysis has resulted in a symbolic growth in the volume of study, especially on more subjective text types, namely, product or movie reviews…

Abstract

Purpose

Up to date development in sentiment analysis has resulted in a symbolic growth in the volume of study, especially on more subjective text types, namely, product or movie reviews. The key difference between these texts with news articles is that their target is defined and unique across the text. Hence, the reviews on newspaper articles can deal with three subtasks: correctly spotting the target, splitting the good and bad content from the reviews on the concerned target and evaluating different opinions provided in a detailed manner. On defining these tasks, this paper aims to implement a new sentiment analysis model for article reviews from the newspaper.

Design/methodology/approach

Here, tweets from various newspaper articles are taken and the sentiment analysis process is done with pre-processing, semantic word extraction, feature extraction and classification. Initially, the pre-processing phase is performed, in which different steps such as stop word removal, stemming, blank space removal are carried out and it results in producing the keywords that speak about positive, negative or neutral. Further, semantic words (similar) are extracted from the available dictionary by matching the keywords. Next, the feature extraction is done for the extracted keywords and semantic words using holoentropy to attain information statistics, which results in the attainment of maximum related information. Here, two categories of holoentropy features are extracted: joint holoentropy and cross holoentropy. These extracted features of entire keywords are finally subjected to a hybrid classifier, which merges the beneficial concepts of neural network (NN), and deep belief network (DBN). For improving the performance of sentiment classification, modification is done by inducing the idea of a modified rider optimization algorithm (ROA), so-called new steering updated ROA (NSU-ROA) into NN and DBN for weight update. Hence, the average of both improved classifiers will provide the classified sentiment as positive, negative or neutral from the reviews of newspaper articles effectively.

Findings

Three data sets were considered for experimentation. The results have shown that the developed NSU-ROA + DBN + NN attained high accuracy, which was 2.6% superior to particle swarm optimization, 3% superior to FireFly, 3.8% superior to grey wolf optimization, 5.5% superior to whale optimization algorithm and 3.2% superior to ROA-based DBN + NN from data set 1. The classification analysis has shown that the accuracy of the proposed NSU − DBN + NN was 3.4% enhanced than DBN + NN, 25% enhanced than DBN and 28.5% enhanced than NN and 32.3% enhanced than support vector machine from data set 2. Thus, the effective performance of the proposed NSU − ROA + DBN + NN on sentiment analysis of newspaper articles has been proved.

Originality/value

This paper adopts the latest optimization algorithm called the NSU-ROA to effectively recognize the sentiments of the newspapers with NN and DBN. This is the first work that uses NSU-ROA-based optimization for accurate identification of sentiments from newspaper articles.

Details

Kybernetes, vol. 51 no. 1
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 27 April 2020

Deepesh Sharma and Naresh Kumar Yadav

In computer application scenario, data mining task is rarely utilized in power system, as an enhanced part, this work presented data mining task in power systems, to overcome…

Abstract

Purpose

In computer application scenario, data mining task is rarely utilized in power system, as an enhanced part, this work presented data mining task in power systems, to overcome frequency deviation issues. Load frequency control (LFC) is a primary challenging problem in an interconnected multi-area power system.

Design/methodology/approach

This paper adopts lion algorithm (LA) for the LFC of two area multi-source interconnected power systems. The LA calculates the optimal gains of the fractional order PI (FOPI) controller and hence the proposed LA-based FOPI controller (LFOPI) is developed.

Findings

For the performance analysis, the proposed algorithm compared with various algorithm is given as, 80.6% lesser than the FOPI algorithm, 2.5% lesser than the GWO algorithm, 2.5% lesser than the HSA algorithm, 4.7% lesser than the BBO algorithm, 1.6% lesser than PSO algorithm and 80.6% lesser than the GA algorithm.

Originality/value

The LFOPI controller is the proposed controlling method, which is nothing but the FOPI controller that gets the optimal gain using the LA. This method produces better performance in terms of converging behavior, optimization of controller gain, transient profile and steady-state response.

Details

Data Technologies and Applications, vol. 54 no. 3
Type: Research Article
ISSN: 2514-9288

Keywords

1 – 10 of 88