Search results

1 – 10 of 151
Open Access
Article
Publication date: 12 April 2024

Abbas Ali Chandio, Huaquan Zhang, Waqar Akram, Narayan Sethi and Fayyaz Ahmad

This study aims to examine the effects of climate change and agricultural technologies on crop production in Vietnam for the period 1990–2018.

Abstract

Purpose

This study aims to examine the effects of climate change and agricultural technologies on crop production in Vietnam for the period 1990–2018.

Design/methodology/approach

Several econometric techniques – such as the augmented Dickey–Fuller, Phillips–Perron, the autoregressive distributed lag (ARDL) bounds test, variance decomposition method (VDM) and impulse response function (IRF) are used for the empirical analysis.

Findings

The results of the ARDL bounds test confirm the significant dynamic relationship among the variables under consideration, with a significance level of 1%. The primary findings indicate that the average annual temperature exerts a negative influence on crop yield, both in the short term and in the long term. The utilization of fertilizer has been found to augment crop productivity, whereas the application of pesticides has demonstrated the potential to raise crop production in the short term. Moreover, both the expansion of cultivated land and the utilization of energy resources have played significant roles in enhancing agricultural output across both in the short term and in the long term. Furthermore, the robustness outcomes also validate the statistical importance of the factors examined in the context of Vietnam.

Research limitations/implications

This study provides persuasive evidence for policymakers to emphasize advancements in intensive agriculture as a means to mitigate the impacts of climate change. In the research, the authors use average annual temperature as a surrogate measure for climate change, while using fertilizer and pesticide usage as surrogate indicators for agricultural technologies. Future research can concentrate on the impact of ICT, climate change (specifically pertaining to maximum temperature, minimum temperature and precipitation), and agricultural technological improvements that have an impact on cereal production.

Originality/value

To the best of the authors’ knowledge, this study is the first to examine how climate change and technology effect crop output in Vietnam from 1990 to 2018. Various econometrics tools, such as ARDL modeling, VDM and IRF, are used for estimation.

Details

International Journal of Climate Change Strategies and Management, vol. 16 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 23 April 2018

Francis Wasswa Nsubuga and Hannes Rautenbach

In view of the consensus that climate change is happening, scientists have documented several findings about Uganda’s recent climate, as well as its variability and change. The…

8209

Abstract

Purpose

In view of the consensus that climate change is happening, scientists have documented several findings about Uganda’s recent climate, as well as its variability and change. The purpose of this study is to review what has been documented, thus it gives an overview of what is known and seeks to explain the implications of a changing climate, hence what ought to be known to create a climate resilient environment.

Design/methodology/approach

Terms such as “climate”, “climate change” and “climate variability” were identified in recent peer-reviewed published literature to find recent climate-related literature on Uganda. Findings from independent researchers and consultants are incorporated. Data obtained from rainfall and temperature observations and from COSMO-CLM Regional Climate Model-Coordinated Regional Climate Downscaling Experiment (CCLM CORDEX) data, European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) data and Global Precipitation Climatology Centre (GPCC) have been used to generate spatial maps, seasonal outputs and projections using GrADS 2.02 and Geographic Information System (GIS) software for visualization.

Findings

The climate of Uganda is tropical in nature and influenced by the Inter-Tropical Convergence Zone (ITCZ), varied relief, geo-location and inland lakes, among other factors. The impacts of severe weather and climate trends and variability have been documented substantially in the past 20-30 years. Most studies indicated a rainfall decline. Daily maximum and minimum temperatures are on the rise, while projections indicate a decrease in rainfall and increase in temperature both in the near and far future. The implication of these changes on society and the economy are discussed herein. Cost of inaction is expected to become huge, given factors like, the growing rate of the population and the slow expanding economy experienced in Uganda. Varied forms of adaptation to the impacts of climate change are being implemented, especially in the agricultural sector and at house hold level, though not systematically.

Originality/value

This review of scientific research findings aims to create a better understanding of the recent climate change and variability in Uganda and provides a baseline of summarized information for use in future research and actions.

Details

International Journal of Climate Change Strategies and Management, vol. 10 no. 5
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 28 June 2022

Wenhao Yu, Jun Li, Li-Ming Peng, Xiong Xiong, Kai Yang and Hong Wang

The purpose of this paper is to design a unified operational design domain (ODD) monitoring framework for mitigating Safety of the Intended Functionality (SOTIF) risks triggered…

1785

Abstract

Purpose

The purpose of this paper is to design a unified operational design domain (ODD) monitoring framework for mitigating Safety of the Intended Functionality (SOTIF) risks triggered by vehicles exceeding ODD boundaries in complex traffic scenarios.

Design/methodology/approach

A unified model of ODD monitoring is constructed, which consists of three modules: weather condition monitoring for unusual weather conditions, such as rain, snow and fog; vehicle behavior monitoring for abnormal vehicle behavior, such as traffic rule violations; and road condition monitoring for abnormal road conditions, such as road defects, unexpected obstacles and slippery roads. Additionally, the applications of the proposed unified ODD monitoring framework are demonstrated. The practicability and effectiveness of the proposed unified ODD monitoring framework for mitigating SOTIF risk are verified in the applications.

Findings

First, the application of weather condition monitoring demonstrates that the autonomous vehicle can make a safe decision based on the performance degradation of Lidar on rainy days using the proposed monitoring framework. Second, the application of vehicle behavior monitoring demonstrates that the autonomous vehicle can properly adhere to traffic rules using the proposed monitoring framework. Third, the application of road condition monitoring demonstrates that the proposed unified ODD monitoring framework enables the ego vehicle to successfully monitor and avoid road defects.

Originality/value

The value of this paper is that the proposed unified ODD monitoring framework establishes a new foundation for monitoring and mitigating SOTIF risks in complex traffic environments.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 5 October 2020

Truong An Dang

The purpose of this study is to evaluate the rainfall intensities and their limits for durations from 0.25 to 8 h with return periods from 2 to 100 years for Ca Mau City in…

1701

Abstract

Purpose

The purpose of this study is to evaluate the rainfall intensities and their limits for durations from 0.25 to 8 h with return periods from 2 to 100 years for Ca Mau City in Vietnam.

Design/methodology/approach

First, the quality of the historical rainfall data series in 44 years (1975–2018) at Ca Mau station was assessed using the standard normal homogeneity test and the Pettitt test. Second, the appraised rainfall data series are used to establish the rainfall intensity-duration-frequency curve for the study area.

Findings

Based on the findings, a two-year return period, the extreme rainfall intensities (ERIs) ranged from 9.1 mm/h for 8 h rainstorms to 91.2 mm/h for 0.25 h. At a 100-year return period, the ERIs ranged from 18.4 mm/h for 8 h rainstorms to 185.8 mm/h for 0.25 h. The results also show that the narrowest uncertainty level between the lower and upper limits recorded 1.6 mm at 8 h for the two-year return period while the widest range is at 42.5 mm at 0.25 h for the 100-year return period. In general, the possibility of high-intensity rainfall values compared to the extreme rainfall intensities is approximately 2.0% at the 100-year return period.

Originality/value

The results of the rainfall IDF curves can provide useful information for policymakers to make the right decisions in controlling and minimizing flooding in the study area.

Details

International Journal of Climate Change Strategies and Management, vol. 12 no. 5
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 7 February 2022

Abbas Ali Chandio, Yuansheng Jiang, Tehreem Fatima, Fayyaz Ahmad, Munir Ahmad and Jiajia Li

This study aims to examine the impacts of climate change (CC), measured average annual rainfall, average annual temperature and carbon dioxide (CO2e) on cereal production (CPD) in…

3666

Abstract

Purpose

This study aims to examine the impacts of climate change (CC), measured average annual rainfall, average annual temperature and carbon dioxide (CO2e) on cereal production (CPD) in Bangladesh by using the annual dataset from 1988–2014, with the incorporation of cereal cropped area (CCA), financial development (FD), energy consumption (EC) and rural labor force as important determinants of CPD.

Design/methodology/approach

This study used an auto-regressive distributive lag (ARDL) model and several econometric approaches to validate the long- and short-term cointegration and the causality directions, respectively, of the scrutinized variables.

Findings

Results of the bounds testing approach confirmed the stable long-term connections among the underlying variables. The estimates of the ARDL model indicated that rainfall improves CPD in the short-and long-term. However, CO2e has a significantly negative impact on CPD both in the short-and long-term. Results further showed that temperature has an adverse effect on CPD in the short-term. Among other determinants, CCA, FD and EC have significantly positive impacts on CPD in both cases. The outcomes of Granger causality indicated that a significant two-way causal association is running from all variables to CPD except temperature and rainfall. The connection between CPD and temperature is unidirectional, showing that CPD is influenced by temperature. All other variables also have a valid and significant causal link among each other. Additionally, the findings of variance decomposition suggest that results are robust, and all these factors have a significant influence on CPD in Bangladesh.

Research limitations/implications

These findings have important policy implications for Bangladesh and other developing countries. For instance, introduce improved cereal crop varieties, increase CCA and familiarizes agricultural credits through formal institutions on relaxed conditions and on low-interest rates could reduce the CPD’s vulnerability to climate shocks.

Originality/value

To the best of the authors’ knowledge, this study is the first attempt to examine the short- and long-term impacts of CC on CPD in Bangladesh over 1988–2014. The authors used various econometrics techniques, including the ARDL approach, the Granger causality test based on the vector error correction model framework and the variance decomposition method.

Details

International Journal of Climate Change Strategies and Management, vol. 14 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 22 February 2024

Francisca Letícia Ferreira de Lima, Rafael Barros Barbosa, Alesandra Benevides and Fernando Daniel de Oliveira Mayorga

This paper examines the impact of extreme rainfall shocks on the performance in test scores of students living near at-risk urban areas in Brazil.

Abstract

Purpose

This paper examines the impact of extreme rainfall shocks on the performance in test scores of students living near at-risk urban areas in Brazil.

Design/methodology/approach

To identify the causal effect, we consider the exogenous variation of rainfall at the municipal level conditioned on the distance from the school to risk areas and the rainfall intensity in the school months.

Findings

The results suggest that extreme precipitation shocks, defined as a shock of at least three months of high-intensity rainfall, have an adverse impact on both math and language performance. Through a heterogeneous effects analysis, we find that the impact varies by student gender, with girls being more affected. In addition, among students who study near at-risk areas, those with better previous school performance and higher socioeconomic status are more negatively affected.

Originality/value

Our results suggest that extreme weather events can increase the differences in human capital accumulation between the population living near risk areas and those living more distant from these areas.

Details

EconomiA, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1517-7580

Keywords

Open Access
Article
Publication date: 5 April 2019

Fissha Asmare, Hailemariam Teklewold and Alemu Mekonnen

This study aims to examine the effect of crop diversification (CD), as a climate change adaptation strategy, on farm household’s welfare in terms of farm income and demand for…

3460

Abstract

Purpose

This study aims to examine the effect of crop diversification (CD), as a climate change adaptation strategy, on farm household’s welfare in terms of farm income and demand for labor. It explores whether adoption of CD is a win-win strategy on household income and demand for on-farm labor. It also examines the determinants of rural household’s net farm income and family labor demand.

Design/methodology/approach

A household-plot level data were collected in 2015 from 929 rural farm households and 4,778 plots in the Nile Basin of Ethiopia. The data comprise farm and household characteristics accompanied by geo-referenced climate data such as long-term average temperature and amount and variability of growing season rainfall. The authors estimate an endogenous switching regression model to measure the effect of CD on the farm household’s welfare, using net farm income and household labor demand as a welfare indicator.

Findings

The results indicate heterogeneous effects of climate variables on farm income between adopters and non-adopters of CD. The study also confirms the win-win effect of adoption of CD with a positive and significant effect on farm income and a reduction in demand for on-farm labor. The results suggest that adoption of CD helps improve the well-being of farm households and build a resilient agricultural system.

Research limitations/implications

As the study used a cross-sectional data, it is limited to show the time effect of practicing CD on the household’s welfare.

Originality/value

First, the authors investigate, to their knowledge for the first time, the existence of synergy or tradeoff in the effect of CD on two dimensions of rural households’ welfare (net farm income and labor demand). Second, they investigate the heterogeneous effect of climate change adaptation strategies on the farm household’s welfare between adopters and non-adopters. This is unlike previous studies that consider climate change adaptation strategies as having a homogeneous effect. However, this approach is inappropriate since the effect of adaptation strategies is different for adopters and non-adopters.

Details

International Journal of Climate Change Strategies and Management, vol. 11 no. 4
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 15 August 2024

Jing Zou, Martin Odening and Ostap Okhrin

This paper aims to improve the delimitation of plant growth stages in the context of weather index insurance design. We propose a data-driven phase division that minimizes…

Abstract

Purpose

This paper aims to improve the delimitation of plant growth stages in the context of weather index insurance design. We propose a data-driven phase division that minimizes estimation errors in the weather-yield relationship and investigate whether it can substitute an expert-based determination of plant growth phases. We combine this procedure with various statistical and machine learning estimation methods and compare their performance.

Design/methodology/approach

Using the example of winter barley, we divide the complete growth cycle into four sub-phases based on phenology reports and expert instructions and evaluate all combinations of start and end points of the various growth stages by their estimation errors of the respective yield models. Some of the most commonly used statistical and machine learning methods are employed to model the weather-yield relationship with each selected method we applied.

Findings

Our results confirm that the fit of crop-yield models can be improved by disaggregation of the vegetation period. Moreover, we find that the data-driven approach leads to similar division points as the expert-based approach. Regarding the statistical model, in terms of yield model prediction accuracy, Support Vector Machine ranks first and Polynomial Regression last; however, the performance across different methods exhibits only minor differences.

Originality/value

This research addresses the challenge of separating plant growth stages when phenology information is unavailable. Moreover, it evaluates the performance of statistical and machine learning methods in the context of crop yield prediction. The suggested phase-division in conjunction with advanced statistical methods offers promising avenues for improving weather index insurance design.

Details

Agricultural Finance Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0002-1466

Keywords

Open Access
Article
Publication date: 21 January 2020

Abbas Ali Chandio, Yuansheng Jiang, Abdul Rehman and Abdul Rauf

The climate change effects on agricultural output in different regions of the world and have been debated in the literature of emerging economies. Recently, the agriculture sector…

18557

Abstract

Purpose

The climate change effects on agricultural output in different regions of the world and have been debated in the literature of emerging economies. Recently, the agriculture sector has influenced globally through climate change and also hurts all sectors of economies. This study aims to examine and explore the impact of global climate change on agricultural output in China over the period of 1982-2014.

Design/methodology/approach

Different unit root tests including augmented Dickey–Fuller, Phillips–Perron and Kwiatkowski, Phillips, Schmidt and Shin are used to check the order of integration among the study variables. The autoregressive distributed lag (ARDL) bounds testing approach to cointegration and the Johansen cointegration test are applied to assess the association among the study variables with the evidence of long-run and short-run analysis.

Findings

Unit root test estimations confirm that all variables are stationary at the combination of I(0) and I(1). The results show that CO2 emissions have a significant effect on agricultural output in both long-run and short-run analyses, while temperature and rainfall have a negative effect on agricultural output in the long-run. Among other determinants, the land area under cereal crops, fertilizer consumption, and energy consumption have a positive and significant association with agricultural output in both long-run and short-run analysis. The estimated coefficient of the error correction term is also highly significant.

Research limitations/implications

China’s population is multiplying, and in the coming decades, the country will face food safety and security challenges. Possible initiatives are needed to configure the Chinese Government to cope with the adverse effects of climate change on agriculture and ensure adequate food for the growing population. In concise, the analysis specifies that legislators and policy experts should spot that the climate change would transmute the total output factors, accordingly a county or regional specific and crop-specific total factor of production pattern adaptation is indorsed.

Originality/value

The present empirical study is the first, to the best of the authors’ knowledge, to investigate the impact of global climate change on agricultural output in China by using ARDL bounds testing approach to cointegration and Johansen cointegration test.

Details

International Journal of Climate Change Strategies and Management, vol. 12 no. 2
Type: Research Article
ISSN: 1756-8692

Keywords

Open Access
Article
Publication date: 19 September 2019

Walaa Mahrous

This study aims to analyze the impact of global climate change on food security in the East African Community (EAC) region, using panel data analysis for five countries, over…

4555

Abstract

Purpose

This study aims to analyze the impact of global climate change on food security in the East African Community (EAC) region, using panel data analysis for five countries, over 2000-2014.

Design/methodology/approach

The determinants of food security are expressed as a function of rainfall, temperature, land area under cereal production, and population size. The paper used pooled fixed effects to estimate the relationship among these variables.

Findings

Findings show that food security in EAC is adversely affected by temperature. However, precipitation and increasing areas cultivated with cereal crops will be beneficial to ensure everyone's food security.

Originality/value

Actions for mitigating global warming are important for EAC to consolidate the region’s economic, political and social development/stability.

Details

Review of Economics and Political Science, vol. 4 no. 4
Type: Research Article
ISSN: 2356-9980

Keywords

1 – 10 of 151