SOTIF risk mitigation based on unified ODD
monitoring for autonomous vehicles

Wenhao Yu and Fun Li
School of Vehicle and Mobility, Tsinghua University, Beijing, China
Li-Ming Peng
Department of Vehicle Engineering, Hefei University of Technology, Hefei, China
Xiong Xiong
Department of Decision and Control and Department of Aeronautical and Vehicle Engineering,
KTH Royal Institute of Technology, Stockholm, Sweden

Kai Yang
College of Mechanical and Vehicle Engineering, Chongging University, Chongging, China, and

Hong Wang
School of Vehicle and Mobility, Tsinghua University, Beijing, China

Abstract

Purpose — The purpose of this paper is to design a unified operational design domain (ODD) monitoring framework for mitigating Safety of the
Intended Functionality (SOTIF) risks triggered by vehicles exceeding ODD boundaries in complex traffic scenarios.

Design/methodology/approach — A unified model of ODD monitoring is constructed, which consists of three modules: weather condition
monitoring for unusual weather conditions, such as rain, snow and fog; vehicle behavior monitoring for abnormal vehicle behavior, such as traffic
rule violations; and road condition monitoring for abnormal road conditions, such as road defects, unexpected obstacles and slippery roads.
Additionally, the applications of the proposed unified ODD monitoring framework are demonstrated. The practicability and effectiveness of the
proposed unified ODD monitoring framework for mitigating SOTIF risk are verified in the applications.

Findings — First, the application of weather condition monitoring demonstrates that the autonomous vehicle can make a safe decision based on the
performance degradation of Lidar on rainy days using the proposed monitoring framework. Second, the application of vehicle behavior monitoring demonstrates
that the autonomous vehicle can properly adhere to traffic rules using the proposed monitoring framework. Third, the application of road condition monitoring
demonstrates that the proposed unified ODD monitoring framework enables the ego vehicle to successfully monitor and avoid road defects.

Originality/value — The value of this paper is that the proposed unified ODD monitoring framework establishes a new foundation for monitoring
and mitigating SOTIF risks in complex traffic environments.

Keywords Autonomous vehicle, ODD monitoring, Operational design domain, Safety of the intended functionality, Traffic rule compliance
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1. Introduction guarantees (Ren et al., 2019; Wang et al., 2015). The complex
operating environment and performance insufficiency of

1.1 Motivation artificial intelligence (AI) algorithms are triggering the safety

The autonomous vehicle is one of the highly anticipated new
technologies of the modern era (Huang er al, 2019). It
encompasses research from diversified fields, such as control
theory, computer science and orientation engineering (Kuutti
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risks of autonomous vehicles (Wang ez al., 2022; Willers ez al.,
2020), which is beyond the scope of conventional safety
concepts, including functional safety.

The Safety of the Intended Functionality (SOTIF) is a novel
safety concept developed to address the emerging safety
domain of autonomous vehicles. It considers the absence of
unreasonable risk due to hazards resulting from the
performance limitations/functional insufficiency or reasonably
foreseeable misuses (ISO, 2019). Two necessary conditions
would lead to the SOTIF risks: trigger condition and
performance limitation/functional insufficiency of the system.
Significant research efforts have been continuously devoted to
improving the functionality of Al algorithms (Yang ez al., 2021;
Chen er al., 2020; Wang er al., 2020), while the trigger
conditions in the operational design domain (ODD) of an
autonomous vehicle have not been well addressed in the
available research literature yet. Therefore, the main focus of
this research is to develop a unified ODD monitoring
framework to mitigate the SOTIF risks triggered by vehicles
exceeding ODD boundaries in complex traffic scenarios.

1.2 Related research

ODD refers to the specific operating conditions under which an
autonomous vehicle is designed to operate. Several aspects of
ODD have been investigated and discussed (Xia et al., 2020;
Talamini ez al., 2020; Xiao et al., 2021), including weather
conditions, vehicle behaviors, and road conditions.

Environmental perception in adverse weather conditions
remains a major challenge to ensure the safety of autonomous
vehicles. Several weather monitoring approaches have been
used to improve the insufficiency of perception algorithms. For
instance, Karlsson er al. (2021) proposed a probabilistic
hierarchical Bayesian model to quantitatively estimate rainfall
from the LiDAR point cloud sequences for better rain
recognition. Bossu et al. (2011) improved the snowflake
trajectory model and realized the recognition of raindrops and
snowflakes. A camera-based method for fog ambiguity effect
detection was proposed to distinguish the existence of fog in the
street scene (Spinneker er al.,, 2014). To recognize various
weather conditions, Lin er al. (2017) proposed the region
selection and concurrency model to effectively screen out the
discriminative regional features in outdoor images.

The main focuses of the aforementioned research are on
optimizing the functionality of the Al algorithms, while it should be
noted that sensor performance will decline significantly in adverse
weather and then endanger vehicle safety. The speed limit is an
effective way to ensure the safety of vehicles operating in adverse
weather conditions with limited visibility. However, most of the
current speed limit methods are based on the limitation of human
visibility rather than sensor visibility. Therefore, the visibility
limitation of sensors should be considered in the ODD monitoring
in adverse weather to mitigate SOTTF risks.

In terms of vehicle behavior, an autonomous vehicle should
adhere to traffic rules in the same way as a human driver would
in a naturalistic driving environment. Aggressive vehicle
behaviors that violate traffic rules may jeopardize the safety of
autonomous vehicles or cause more unpredictable behavior of
other traffic participants, which increases the SOTIF risk of the
local driving environment. Several studies have been conducted
to formalize and integrate traffic rules into the decision-making
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system. Li er al. (2018) proposed a Takagi—Sugeno fuzzy neural
network decision-making model, which takes 16 factors related
to ethical and legal vehicle-road-environment into account
under red-light running situations. With regard to optimization
approaches, Wei ez al. developed an optimal control strategy
that meets the complex specifications of traffic laws and
cultural expectations of reasonable driving behaviors (Xiao
et al., 2021). However, there is a lack of research on how to
transform the logical expression of traffic rules into vehicle
behavior norms to guide and standardize the driving behaviors
of autonomous vehicles.

For the aspect of road conditions, various types of road
defects will affect the dynamic stability of the autonomous
vehicle, triggering the SOTIF risks. Improved recognition
methods have been used to improve the detection performance
of road defects. Xin et al. proposed a laser-based method to
measure pothole properties comprehensively and precisely by
using 3D line laser data for road defect recognition (She ez al.,
2021). To accomplish the detection and safety evaluation of
road potholes, Wu er al. (2019) developed an algorithm that
integrates the mobile point cloud and images. However, most
detections are not used for detecting big enough defects that
affect the safety of the vehicles, and safe decision-making
avoiding road defects has not been well addressed in available
research yet.

Furthermore, the aforementioned approaches of ODD risk
mitigation for autonomous vehicles consider only one aspect of
ODD in each literature. The existing models have their own
imperfections, due to the neglect of the sensor degradation in
adverse weather, noncompliance with traffic rules and complex
road conditions. The conventional monitoring function is only
designed to detect anomalies, whereas the problem-solving
relies on the decision-making and control modules. However,
any additional requirements might bring major reconstruction
of the decision-making algorithms. As with functional safety’s
fault detection and diagnosis techniques, a modularized
framework should be developed to assist the decision-making
module to deal with the anomalies in ODD. Therefore, a
unified model for the ODD risks monitoring triggered by
vehicles exceeding ODD boundaries should be constructed for
the practical application of autonomous vehicles.

1.3 Contribution

To the best of our knowledge, SOTIF risk mitigation based on
ODD monitoring has not been explored yet. In brief, a unified
ODD monitoring framework is proposed for SOTIF risk
mitigation: for weather condition monitoring, an accurate safe
speed limit method based on the performance decline
information of sensors is proposed; for vehicle behavior
monitoring, a digitalization framework of traffic rules is
proposed; and for road condition monitoring, a recognition and
evaluation method of road defects is proposed. Applications are
simulated to verify the proposed unified ODD monitoring
framework and its ability to mitigate SOTTF risks.

1.4 Paper organization

The rest of this paper is organized as follows. In Section 2, the
unified ODD monitoring framework is modeled and discussed.
Furthermore, three modules of the unified model are designed
and analyzed in detail, respectively, including weather
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condition monitoring, vehicle behavior monitoring and road
condition monitoring. In Section 3, applications of the unified
ODD monitoring framework are carried out, and the
performance of the three modules is analyzed with
corresponding scenarios. The conclusion and future work are
demonstrated in Section 4.

2. The unified operational design domain
monitoring framework

Figure 1 depicts the overall structure of the unified ODD
monitoring framework. For autonomous vehicles, the factors of
ODD boundaries, which should be mainly focused on, can be
classified into three main categories: weather category, vehicle
category and road category. As is illustrated in Figure 1, there
are mutual effects between different categories, which means
that factors in one category may affect factors in another.

Specifically, the weather category encompasses adverse
weather conditions, such as rain, snow and fog. The trigger
conditions for SOTIF risks in the weather category include the
following: degradation of sensors; the functional insufficiency
of perception algorithms; and variation of the road friction
coefficient.

The vehicle category primarily comprises the factors
involving traffic-rule compliance, perception algorithms,
prediction algorithms, etc. The trigger conditions of SOTIF
risks in the vehicle category include:

+ illegal driving behaviors; and
+ the functional insufficiency of on-board Al algorithm.

The road category mainly includes the road conditions, such as
road defects and slippery roads. The road category would affect
the dynamic stability of an autonomous vehicle, which might
cause the functional insufficiency of the autonomous system
and trigger the SOTIF risks.

In this paper, the unified ODD monitoring framework is
divided into three modules, including weather condition
monitoring, vehicle behavior monitoring and road condition
monitoring. Each module is responsible for monitoring the
corresponding category and producing the reference signals to
assist the original autonomous system in coping with
anomalies. For brevity, the primary focus of each module will
be assigned to specific factors.

Figure 1 The overall structure of the unified ODD monitoring framework
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2.1 Weather condition monitoring

There are drastic performance degradations of Lidar and
variation of road friction coefficients on rainy days. A proper
speed limit based on real-time weather conditions is the most
effective method to guarantee driving safety and mitigate
SOTIF risks. To enhance the safety of autonomous vehicles, an
accurate safe speed limit method is proposed based on safe
distance and detectable distance of sensors.

For longitudinal safety, safe distance models are mainly used.
Many of them determine the safety states of a vehicle by
analyzing the safe distance based on the relative movement
between leading and following vehicles in real-time (Miller and
Huang, 2002). The safe distance model from the
Responsibility-Sensitive Safety (RSS) is used in the process of
speed limit design. RSS safe distance is a dynamic distance,
which cannot be used in speed limit calculation. Therefore, the
modified RSS safe distance is defined under the assumption of
a static leading vehicle, which is given as (Shalev-Shwartz ez al.,
2017):

N 2
SSD:% +vp +0.5p2amaxacc )

where SSD is the safe distance, v denotes the velocity of the
following vehicle, p denotes the response time, @,,4xq.. denotes
the maximum acceleration of the following vehicle and u
denotes the road friction coefficient.

The depth of the water film is the most important factor
affecting the road friction coefficient on rainy days, which can
be attained by:

(L;D)%?
d = 0.046 2
S05
w=0211% 404 3)

where d represents water film depth, L denotes the length of
the flow path, /is the rain intensity and Syis the flow path slope.
Detectable distance is the maximal distance under which an
autonomous vehicle can detect objects. The detectable distance
of human eyes is affected by both speed and rainfall intensity,
whereas that of sensors is limited only by the rainfall intensity.

Weather
condition [—— Rain, Snow, Fog, etc.
ing

Vehicle Regulation compliance,
behavior —— Perception, Prediction,
monitoring etc.
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condition | Road defects, Slippery
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Rainfall experiments should be conducted to determine the
performance attenuation of Lidar on rainy days. Lidar can
detect objects only when receiving energy is larger than the
minimum receivable energy. Therefore, the maximum
detectable distance of Lidar is determined by the received
energy, which is presented by:

_ PEDRZchosa

P
R 4R?

©)

nsys N Atm

where Pr denotes the energy of the laser produced by lidar, Pg is
received laser energy, Dy represents the radium of aperture and
p. stands for the reflection rate of objects. Furthermore, « is the
incidence angle, 7, refers to the transmission efficiency of the
system and 7 4,,, is the transmission efficiency of the atmosphere.

The detectable distance in each rain intensity can be
calculated using the information of the detectable distance in
normal conditions. Then, the speed limit on rainy days can be
calculated as follows:

SSD(vlim) = Daetectable 3)
where D ;...anie 18 the detectable distance, and SSD is a function
of the speed limit, which replaces the velocity of the following
vehicle in equation (1).

In the meantime, hydroplaning happens when water film
builds between the wheels of the vehicles and the road surface,
which will lead to a decrease in the friction of the road. A rough
prediction of the hydroplaning speed of the vehicle is calculated
as follows (Ong and Fwa, 2007):

v, = 6.364/p (6)
At the same time, the speed limit of traffic rules from vehicle
behavior monitoring should be considered. Therefore, the
reference speed limit from the weather condition monitoring
module is as follows:
(7N

Vweather = min{vlimv vp}

2.2 Vehicle behavior monitoring
The performance of traffic-rule compliance is a critical factor in
vehicle behavior monitoring for an autonomous vehicle. But
the digitalization of traffic rules entails more than elaborating a
certain traffic rule into a series of logical expressions.
Additionally, it should also transform the logical expressions
into vehicle behavior references to guide and standardize the
driving behaviors of autonomous vehicles. To enhance the
safety of autonomous vehicles, a digitalization framework of
traffic rules is proposed to ensure compliance with traffic rules.
Figure 2 demonstrates the overview of the digitalization
framework of traffic rules. Despite the variation of traffic rules
in different countries, most of them regulate four aspects of
driving behavior, including speeds, distances, actions and right
of way. For speed constraints, upper and lower limits on the
vehicular speed will be specified to restrict the vehicle behaviors
in a certain scenario. For distance constraints, the distance
between vehicles and other traffic participants is usually
constrained by a specific distance in some specific scenes. In
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some cases, fuzzy descriptions, such as “maintain a safe
distance,” might be given, necessitating the addition of
additional thresholds for digitalization. For action constraints,
it will specify whether the vehicle can pass, overtake, change
lanes, stop, etc. under certain conditions. At the same time, it
will incorporate the distance constraints as trigger conditions,
such as prohibiting certain activities within a specified distance
of certain facilities or road structures. For the right of way
restriction, it will be stipulated when the vehicle will have
priority right of way under specific situations, such as “straight
forward or right forward vehicles go first.”

The digitalization framework of traffic rules contains two
parts, including digitalization and monitoring. In the
digitalization part, the logical definition is critical to the smooth
operation of digitalization. It defines the computable
quantitative expression of all the entities involved in rules and is
the adaptive quantitative logical translation of those entities.
The traffic rules are elaborated into logical definitions, which
contain the trigger conditions and fuzzy descriptions. The
trigger conditions are the prerequisites for the effectiveness of
each traffic law, such as the presence of various traffic signs and
markings, the presence of certain facilities or road conditions
and the presence of certain weather conditions. For fuzzy
descriptions, the thresholds should be defined in advance. For
instance, the longitudinal TTC distance for safety is equal to
5s. In the monitoring part, the reference outputs are classified
into three main categories, including reference variables, state
constraints and their combination. The working procedure of
the digitalization framework of traffic rules is demonstrated in
Pseudocode of the working procedure for the digitalization framework
of traffic rules.

Algorithm1 Pseudocode of the working procedure
1:Initialization:

2: transformthe traffic rules into logical
definitions;
3: sort out the trigger conditions

for specific traffic rules fromthe
logical definitions;

4: define the thresholds for the
fuzzydescriptions;

5: While the autonomous vehicleis

proceeding:
6: Receive the state of theegovehicle;
7: Receive the statesof thedriving
environments;
8: If thetrigger conditions are satisfied:
9: search for the logical definitions

for the specific traffic rule;

10: search for the thresholds for the
fuzzy descriptions;
11: output the reference signals
€ {reference variables, states
12: constraints,  their combination}
13: End
14: End

2.3 Road condition monitoring

Road conditions have direct impacts on vehicular dynamics,
whereas the majority of perception modules are focused
exclusively on traffic participants or traffic signs. Road
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Figure 2 The overview of the digitalization framework of traffic rules
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deformations should be detected to avoid hazards that might
result in extreme changes in vehicle states and escalate into an
out-of-control situation. A recognition and evaluation method
of road defects is proposed to mitigate SOTIF risks caused by
road conditions.

Figure 3 demonstrates the working flow of the recognition
and evaluation method of road defects. The method is based on
the point cloud information of Lidars. To begin with, the point
cloud information of Lidars usually contains objects, including
traffic participants, roadside objects and other irrelevant
information. Therefore, it is necessary to extract the region of
interest from the data by filtering out the point cloud of the road
surface.

For the meshing and plane fitting section, the road should be
meshed to minimize the deviation between the fitting plane and
the road surface, due to the variation of the slope on the road.
Then, a modified random sample consensus (RANSAC)
algorithm is designed to fit the plane and build a pavement

Figure 3 The flowchart of the recognition and evaluation method of
road defects
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i
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model. The inliers of the road surface planes are filtered out via
the RANSAC algorithm, while the planes are fitted by the least
square method. Specifically, the pseudocode of the modified
RANSAC algorithm is demonstrated in The pseudocode of the
modified RANSAC algorithm.

Part 1 of the modified RANSAC algorithm
1: input: the set for all points in the grid
unit, C; distance threshold d;.,
2: output: the estimatedbest-fittedplane for
thisgrid, Ppes:

: N« O

: n, «— card(C)

: while N< N, do

S« 3 randompoints inset C

P+ theplane constructedby S

A « all points in set Cwhose distance to

theplane Psatisfy d<d.y

9: if card(A) > card(A,.x) then

W J 0 Ul W

10: Pbest «— P

11: Apax— A

12: endif

13: if card(A)/n.> a.n then
14: return Py o+

15: endif

16: N« N+ 1

17: endwhile

Part 2 of the modified RANSAC algorithm

1: input: the set forall pointsinagridunit,
C

2: output:
grid, Pchosen
3:1n.« card(C)

4: Poposen— Part 1 (C, depi)

5: np« the count of points in set C whose dis-
tance tothe plane P yogensatisfy d<dgey

6: if% < ayy then

7: Pch;sen(_ Part1l (C/ dthz)

8:endif

the chosen fitted plane for this

Furthermore, the outliers of the chosen plane are selected when
the distances d between the plane and points are larger than a
threshold d,;,o. Based on the relative distances, the outliers are
classified into different clusters. The 3D bounding box and
point cloud information of each road defect will be output for
the suspension-response-based evaluation.
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The road input of a detected road defect is given by:

D
=— z
q ” P

peB

)

where ¢ is the road input, B is the point set of the tire contact
area, n = card (B) denotes the number of the points in B and 2,
denotes the z coordinate of the position p.

The suspension response of the road defect is simulated
using a quarter-car model. To assess the risk of a road defect,
the weighted RMS value of the acceleration a, will be
calculated as follows:

©)

Different reference lane Y,.; and speed v, will be given based
on the corresponding weighted RMS values of the road defects
from the road condition monitoring, which is as follows:

(Yref,h vref,i) = lp(aw‘i) (10)

where ¥ (a,,;) is a mapping set of (Y., vrer2) and a,,.

3. Application

In this section, the functionality of the proposed unified ODD
monitoring framework is demonstrated by the design and
analysis of three typical SOTIF-related applications. Figure 4
illustrates the simulation structure used in the applications of
the proposed framework. The MPC-based decision-making
system is used to take the reference signals and state constraints
from modules of the unified ODD monitoring framework and
perform the motion control of autonomous vehicles. For
brevity, the functions of the MPC-based decision-making
system are not illustrated here, which can be found in Wang
eral. (2019).

3.1 Application I - weather condition monitoring

In this application, the performance of the proposed unified
ODD monitoring framework under rainy weather conditions is
demonstrated. The initial speed of the autonomous vehicle is
15 km/h and targets at 70 km/h. The rain will occur in 10 s with
an intensity of 2.5 mm/h.

Figure 4 The simulation structure of applications

Unified ODD monitoring framework

oot | |

vehicle
monitoring

road
monitoring

monitoring

MPC based decision-making system

| | | | | |

Cost
functions

State
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Reference
parameters

Weight ‘

162

Volume 5 - Number 3 - 2022 - 157-166

To get the detectable distance, a rainfall experiment is
conducted to obtain the sensor’s performance on rainy days. A
whiteboard (reference whiteboard), a dummy and a vehicle are
used as obstacles in the experiment, with distances of 15, 20
and 40 m, respectively, as shown in Figure 5. The performance
of Lidar in different rain intensities is demonstrated in Table 1.
For Lidar, the most critical parameter that will affect driving
safety is actually the reflectance, which determines the maximal
detectable distance. As illustrated in Table 1, the car has the
smallest reflectance because of the complex shape and thick
water layer formed by raindrops. To ensure safety, the data of
the car is used to calculate the proposed speed limit. Table 2
demonstrates the final speed limit for various rain intensities
using the proposed speed limit method.

Figure 6 demonstrates the variation of velocity under rainy
weather conditions. The red line represents the speed limit
calculated by real-time weather conditions, while the blue line
denotes the running speed generated by the MPC controller.
Because of the absence of rain at the beginning, the speed limit
is 60 km/h (shown in Table 2). The vehicle accelerates to reach
the reference speed (it equals 0.85 times the speed limit). The
velocity of the autonomous vehicle reaches the reference value
at 6 s with a slight overshoot. At 10 s, light rain begins, reducing
the speed constraint to 42 km/h. The vehicle will decrease its
speed to reach the new reference value. This application
demonstrates that the autonomous vehicle can make a safe
decision based on the performance degradation of Lidar on
rainy days using the proposed monitoring framework.

3.2 Application II -vehicle behavior monitoring

In this application, the compliance performance of the
proposed unified ODD monitoring framework in traffic rules is
demonstrated in a SOTIF-related scenario. The scenario is
stetted that an opposing-driving vehicle is approaching the ego
vehicle on a two-way street with no centerline. And the
surrounding vehicle is positioned relatively close to the right
edge of the road, as is depicted in Figure 7.

According to Article 48 of the regulations for the
implementation of the road traffic safety law of the People’s
Republic of China: when another motor vehicle approaches
from the opposite direction on roads without central isolation
facilities or central lines, the vehicle must slow down and drive
to the right, maintaining the necessary safety distance from
other vehicles and pedestrians (CHINA T C P G, 2005). Based
on the proposed digitalization framework, the logical
definitions of the example traffic rule are shown in Table 3.

Figure 5 Rainfall experiment

Jojenuis urey

40m
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Table 1 The performance of Lidar in different rain intensities

Volume 5 - Number 3 - 2022 - 157-166

Tele-15

Rain intensity Object type Average number of point clouds Average reflectance Reflectance information entropy
No rain White box 453 70 2.1

Dummy 613 17 2.1

Car 1583 14 1.43
Light rain (2.5 mm/h) White box 402 2 0.02

Dummy 732 8 0.03

Car 813 2 0.47
Medium rain White box a1 10 0.85
(8 mm/h) Dummy 716 9 0.37

Car 1147 7.9 0.52
Heavy rain (16 mm/h) White box 476 18 1.45

Dummy 697 10 0.94

Car 1239 9 0.61
Note: *Tele-15 is a high-quality Lidar used in the rain experiment
Table 2 The final speed limit in different rain intensities Table 3 The logical definitions of the example traffic rule

L. . Rain perfo.rmance L Semantic description Logical definition
Rain intensity Detectable Friction Speed limit
(mm/h) distance (m) coefficient (km/h) 1. Without central isolation facilities @Cent _isof Flag! = 1
2. Without central lines @LineColor! = Yellow

0 174 0.8 60 3. Comes in the opposite direction @7’590 X 7rgr <0
2.5 90 0.41 41 4. Motor vehicle @MotorVehicleFlag = 1
8 105 0.378 43 5. Slow down ®v < vy
16 120 0.348 a7 6. Drive to the right ®y <y

Figure 6 The variation of velocity under the rainy weather condition

80 T T T T T T T T T
MPC output(velocity)
= 60 Speed limit b
g N\
z 40
o}
2
v
> 20F 1
0 . . 1 1 | | . 1 |
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Figure 7 The obstacle avoidance scenario

Which trajectory
should I select?

- Ego Vehicle - Surrounding Vehicle <—— Direction Trajectory

Based on the above logical definitions, the trigger conditions
are easily determined as the logical sum of @, @, ® and ®.
Moreover, definitions ®, ® and @ can surely be used as the
constraints of the states and output to the MPC decision-
making system.
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7. Keep necessary safety distance ©,/(Vego — Yrgt)* >0
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With the proposed digitization framework, the performance
comparison of the ego vehicle is demonstrated in Figure 8. T'1
denotes the timestamps of the surrounding vehicle, whereas T
denotes the timestamps of the ego vehicle. Without considering
the traffic rules, the ego vehicle controlled by optimization-
based MPC will choose the left side of the road to avoid
colliding with the surrounding vehicle, as the artificial potential
field values of the surrounding vehicle are primarily on the right
side of the road. This may result in hazardous situations, as the
human-driven surrounding vehicle may turn to the left side
(from the perspective of the ego vehicle) to comply with the
traffic rule. On the other hand, a vehicle that follows the traffic
rules will choose the right side to avoid colliding with the
surrounding vehicle, which complies with the traffic rule and
mitigates the SOTTF risk in this critical scenario.

Figure 8 The performance comparison of the ego vehicle
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3.3 Application III - road condition monitoring

In this application, the performance of the proposed unified
ODD monitoring framework under road defect conditions is
demonstrated. An irregular protuberance is in front of the ego
vehicle on the road, which may endanger the vehicle’s
dynamics. The experiment vehicle is demonstrated in Figure 9,
which is equipped with IPC, Nov Atel GPS, Velodyne Lidar
and a binocular camera. The parameters of the proposed
recognition and evaluation method are listed in Table 4.

A 2m x 2 m grid is used to mesh the road, as demonstrated in
Figure 10(a). With the modified RANSAC algorithm, the fitting
plane of the road is demonstrated in Figure 10(b). After the
outlier searching and clustering, the road defect is recognized,
which is lighted in the point cloud information in Figure 10(c).

Table 5 summarizes the behavioral decision-making
strategies under various a,, ;. As the detected road defect would
cause a hitting on the stop block, the avoidance and
deceleration behavior is selected. The reference signal from the
unified ODD monitoring module is shown in Figure 11. With
recognizing and evaluating the road defect, the reference signal
(Y,ep vy is changed from (1.75, 10) to (5.25, 6) at 1 s to avoid
the road defect and slow down. The trajectory of the ego vehicle
is demonstrated in Figure 12. As is depicted in Figure 12, the
proposed unified ODD monitoring framework enables the ego
vehicle to successfully monitor and avoid road defects.

4. Conclusion and future work

This paper proposed a unified ODD monitoring framework for
autonomous vehicles to mitigate the SOTIF risk triggered by
vehicles exceeding ODD boundaries. The major factors of
ODD boundaries, as well as their mechanisms, were analyzed
and categorized. For monitoring the corresponding category,
the unified model of the proposed unified ODD monitoring
framework contains three modules, including weather
condition monitoring, vehicle behavior monitoring and road
condition monitoring. For weather condition monitoring, an

Figure 9 The experiment vehicle

GPS
=

Table 4 The parameters of the recognition and evaluation method

Parameters Value Parameters Value
din 0.01m At 0.98
dch 0.02m ain 0.9
dthO 0.02m dih 16
dthg 0.15m Athg 25
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Figure 10 The outcomes of the recognition process: (a) the meshing of
the road, (b) the fitting plane of the road and (c) the point cloud
information
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accurate safe speed limit method is proposed to handle the
drastic performance degradation of sensors in rainy conditions.
For vehicle behavior monitoring, a digitalization framework of
traffic rules is proposed to ensure the traffic rule compliance of
an autonomous vehicle. For road condition monitoring, a
recognition and evaluation method of road defects is proposed
to avoid hazards from the road conditions. Three SOTIF-
related applications were constructed to validate the
effectiveness of the proposed framework. The simulation
results indicated that the proposed unified ODD monitoring
framework can effectively mitigate the SOTIF risk in various
conditions for autonomous vehicles.
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Table 5 Behavioral decision-making strategies under different a,,;

Volume 5 - Number 3 - 2022 - 157-166

Stop block

No hitting on the stop block

Hit on the stop block

Comfort level comfort A little discomfort discomfort Extreme discomfort
ay,i <0.315 0.315~0.56 0.56~2.25

Pass v v

Decelerate v v

Avoid v

Avoid and decelerate v v

Figure 11 Reference signals from the unified ODD monitoring module: (a) Y reference and (b) velocity reference

Figure 12 The trajectory of the ego vehicle
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In future work, more complicated scenarios with
heterogeneous conditions will be investigated using the
proposed framework. Additionally, the corresponding real-

world vehicle road tests will be carried out.
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