
Impact of extreme rainfall shocks
on the educational performance
of vulnerable urban students:

evidence from Brazil
Francisca Let�ıcia Ferreira de Lima

P�os Graduaç~ao em Economia – CAEN, Federal University of Cear�a, Fortaleza, Brazil

Rafael Barros Barbosa
Federal University of Cear�a, Fortaleza, Brazil, and

Alesandra Benevides and Fernando Daniel de Oliveira Mayorga
Sobral Campus, Federal University of Cear�a, Fortaleza, Brazil

Abstract

Purpose – This paper examines the impact of extreme rainfall shocks on the performance in test scores of
students living near at-risk urban areas in Brazil.
Design/methodology/approach – To identify the causal effect, we consider the exogenous variation of
rainfall at themunicipal level conditioned on the distance from the school to risk areas and the rainfall intensity
in the school months.
Findings – The results suggest that extreme precipitation shocks, defined as a shock of at least three months
of high-intensity rainfall, have an adverse impact on both math and language performance. Through a
heterogeneous effects analysis, we find that the impact varies by student gender, with girls beingmore affected.
In addition, among students who study near at-risk areas, those with better previous school performance and
higher socioeconomic status are more negatively affected.
Originality/value – Our results suggest that extreme weather events can increase the differences in human
capital accumulation between the population living near risk areas and those living more distant from
these areas.
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1. Introduction
According to recent evidence from climate change literature, the expected number and
magnitude of extreme weather events tend to increase in the coming years (IPCC, 2022). In
urban areas, vulnerability to such events is geographically delineated by risk areas for
natural disasters, i.e. regions of the cities where the occurrence of climatic shocks tends to
produce more social damage. Nowadays, approximately 1.47 billion people, 19% of the
world’s population, live in those areas (WB, 2020). Although there is a considerable amount of
literature documenting the social costs of extreme climate episodes [1], there is little evidence
of their educational costs. In urban areas, weather shocks are less related to economic losses
than in rural areas, where such events reduce agricultural productivity, affecting local
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economic opportunities. Despite the expected lower impact on educational outcomes in urban
areas, students living near at-risk areas may be more exposed to climate shocks, potentially
affecting human capital accumulation. If climate shocks negatively affect students living in
at-risk areas, but not in other areas, this could partly explain why there is greater income
inequality in urban areas (Glaeser, Resseger, & Tobio, 2009; Baum-Snow & Pavan, 2013;
Baum-Snow, Freedman, & Pavan, 2018).

This paper aims to understand the impact of extreme precipitation shocks on students’
performance living near risk areas in Brazil. According to the Brazilian government, there are
approximately 2.47 million families (9.8 million individuals) living in such risk areas, mainly
in highly urbanized cities (IBGE, 2018). Dwelling location near risk areas follows a process
similar to slum formation and is more intensive in developing countries, such as Brazil
(Cavalcanti, Da Mata, & Santos, 2019; Alves, 2021; Marx, Stoker, & Suri, 2013). Since central
regions of cities become more expensive, individuals who seek to benefit from agglomeration
effects (Combes, Duranton, &Gobillon, 2019; Bryan, Glaeser, &Tsivanidis, 2020; Duranton&
Puga, 2004), but cannot afford housing in central areas, have no choice but to live in sub-
housing conditions, such as slums or areas subject to climate hazards.

In this paper, we use a georeferenced database of risk areas in 826municipalities in Brazil.
The data aremade available by the National Center for Natural DisasterMonitoring andAlert
(Centro Nacional de Monitoramento e Alerta de Desastres Naturais - CEMADEM), an official
Brazilian government agency that collects and monitors data on natural disasters. We linked
the georeferenced risk areas to approximately 45 thousand georeferenced schools that
participated in the National Educational Assessment (Sistema de Avaliaç~ao da Educaç~ao
B�asica [SAEB]) from 2007 to 2015 [2]. SAEB measures students’ proficiency in mathematics
and languages in the 5th and 9th grades (11 school years) of primary education and the 3rd
grade of high school. However, we focus our analysis on the 9th grade because this is a critical
period for Brazilian public school students. The 9th grade represents the transition from
middle school to high school (first year of high school) and is the period with the highest
dropout rate during the whole school cycle.

Wemeasure students’ vulnerability to climate shock using the distance from the school to
risk areas. Since transportation is costly for students, especially in developing countries,
enrollment in a specific school has a strong geographic element. Then, we posit that students
who attend schools near risk areas are likely to bemore vulnerable to extremeweather events.

To derive the causal impact of an extreme weather event on vulnerable students, we use a
difference-in-difference empirical strategy. We define the precipitation shock as a variable
that depends on three key factors: student vulnerability, measured by the distance from the
student’s school to the risk area; the duration of the shock, defined by the number of school
months [3] in which students are exposed to a rainfall shock, and the intensity, measured by
the standard deviations of rainfall in a given year in a given municipality relative to the
historical average rainfall in that municipality. The literature on the impact of natural
disasters points out that these three elements are determinants in measuring the effect of
climate shocks (Chen, Mueller, Jia, & Tseng, 2017; Guiteras, Jina, & Mobarak, 2015; Krichene
et al., 2021). In addition, this is a straightforward and a flexible way of measuring
precipitation shocks because we can easily compute such shocks at different values for the
key factors, which enables us to better characterize the effect on educational outcomes and
perform robustness checks.

We report four main results. First, comparing only vulnerable students whose school is at
least 200 m from a risk area, the occurrence of an extreme precipitation shock negatively
affects performance inmath and language.We refer to extreme shocks as precipitationwhose
intensity is greater than 1.5σ relative to the average historical precipitation [4]. The effect size
represents a reduction in test scores close to 0.05σ in math and 0.03σ in language, which
corresponds to a small effect size relative to other educational interventions (Kraft, 2020).
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Second, by using variations in the three key factors that compose the precipitation shock
variable, we document that the magnitude of the impact changes according to shock
intensity, duration of the event and the degree of student exposure. Furthermore,
low-intensity shocks (intensity 1.0σ relative to the historical precipitation) have small and
no significant effects on performance, and very extreme events (intensity 2.0σ relative to the
historical precipitation) have a large effect on student performance. To examine these
findings in more detail, we focus the rest of the analysis on extreme precipitation shocks
(intensity 1.5σ relative to the historical precipitation).

Third, we find relevant heterogeneous effects. Girls are much more affected by extreme
weather shocks than boys, suggesting that these types of shocks have a gender effect. In
addition, students with better prior educational attainment and higher socioeconomic status
(SES) are also more sensitive to extreme shocks. All results are valid for a battery of
robustness checks.

This paper contributes to two main areas. First, recent literature investigates the effect of
rainfall shocks on student outcomes in rural areas. In these areas, rainfall shocks represent an
exogenous variation in the economic context (Zimmermann, 2020; Shah & Steinberg, 2017).
However, this interpretation is misleading in urban areas because of the reduced importance
of the agricultural sector in urban areas. Thus, this paper contributes to the literature that
studies the impact of extreme climate shocks on urban areas (Gu, 2019; Sarmiento & Miller,
2006; Kumar, 2021; Gallagher, 2014). In these areas, vulnerability to climate shocks is much
more related to the proximity of risk areas. Second, this paper contributes to measuring the
social costs of climate change. There is extensive literature documenting the costs of climate
change, such as Barrage, 2020; Diffenbaugh and Burke (2019) and Carleton and Hsiang
(2016). We contribute to show that climate change shocks, especially to vulnerable
individuals, have a large impact on the accumulation of human capital.

In addition to this introduction, this work is divided into three sections. The next section
discusses the backgrounds, the data and the econometric strategy. The next section reports
the main results, and section four discusses the concluding remarks.

2. Data and empirical strategy
2.1 Data
2.1.1 Educational data. The data on education come from the SAEB (Sistema Nacional de
Avaliaç~ao daEducaç~aoB�asica), a nationwide standardized exam conducted by INEP [5] every
two years since 2007 for all 5th and 9th graders in public schools that have at least 20 students
enrolled in that particular grade level. This is a low-stakes assessment administered by the
federal government to assess the progress of students’ cognitive abilities across the country.
It uses Item Response Theory (ITR), which allows comparability of test scores over time.
It has no direct implications for student progress in school, student grades, teacher promotion
or removal. Students are not informed about their individual performance on this assessment.
SAEB data were collected from 2007, 2009, 2011, 2013 and 2015 to measure student
performance, focusing on students enrolled in 9th grade of primary education. To facilitate
the interpretation of the estimates, we standardized student test scores according to the
individual-level distribution of test scores for students in municipalities that did not
experience a precipitation shock.

In addition, INEP applies, along with SAEB, a set of surveys among students, teachers
and principals. We extract from this survey information on student socioeconomic
backgrounds, such as gender, mother’s education, age and racial status. INEP also
provides the addresses of all public elementary schools in Brazil. We use these addresses to
georeference the schools [6].
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2.1.2 Risk areas data. The location of risk areas is provided by CEMADEN (Centro
Nacional deMonitoramento e Alerta de Desastres Naturais). These data inform the location of
risk areas in 826 Brazilian municipalities. Risk areas are defined as areas within
municipalities that are vulnerable to the occurrence of natural phenomena or situations
that cause accidents. Such areas are delimited based on the occurrence of indications and
evidence of earth movements observed on site, such as cracks in the soil, landslide steps,
leaning trees, landslide scars and flood marks, among others.

The regions that present a high risk are grouped and represented by polygons in the
geographic space. The polygonswere created by the federal agency IBGE (Instituto Brasileiro
de Geografia e Estat�ıstica) [7] to characterize the risk areas according to the socioeconomic
information of the residents. This information has been used to subsidize public policies in
those areas whose population is more vulnerable. We extracted only the georeferenced data
from these polygons.

In the online appendix [8], we compare the socioeconomic characteristics of municipalities
with documented risk areas by CEMADEMandmunicipalities that are not in the sample. The
municipalities in the sample are more urban and have a higher number of poor, as measured
by the proportion of poor and the proportion of individuals with an income 1/4 of the
minimumwage. They also have a higher per capita income and lower illiteracy rates. Indeed,
the municipalities in the sample represent more populated municipalities in Brazil, nearly
47% of the Brazilian population.

Figure 1 shows the location where CEMADEN has identified risk areas. Note that the risk
areas are concentrated in coastal municipalities, which also gather the largest share of the
Brazilian population.

We relate Brazilian public schools to polygons of risk areas. Thus, we can measure the
distance from each school to each risk area in the 826 municipalities. Our final sample
contains approximately 15,506 elementary schools, serving approximately 864,000 9th-grade
students each year, representing 36% of the total Brazilian students in that grade.

2.1.3 Other data. We supplement our core risk area and education data with municipal
characteristics from IBGE.We use this source to gather information onmunicipal population,
municipal income, inequality across municipalities and municipal Human Development
Index (HDI). We use this information to address potential prior differences between
municipalities.

2.2 Empirical strategy
2.2.1 Measuring extreme precipitation shock. The effect of precipitation shocks on social and
economic outcomes depends on three factors: the intensity of rainfall, the duration of such an
event and the degree of vulnerability of individuals exposed to the shock. We define
precipitation shock in municipality m in state e in school year t, Tmet, as follows:

Tmet ¼ 1 if 1 dsm < Bf g 3 1 shockmt ≥ nf g (1)

Where, shockmt refers to the number of monthly precipitation shocks in the municipalitym in
the school year t and 1 shockmt ≥ nf g is an indicator function that assigns the value 1 to
municipalities that were exposed to at least n precipitation shocks in the same school year.
The term 1 dsm < Bf g is an indicator function that assigns the value 1 to schools located at a
distance (dsm) of B meters from the border of a risk area. The parameter n indicates the
number of occurrences of precipitation shocks in schools near risk areas. We assume that
n ≥ 3, implying the variable Tmet is equal to 1 if occurs at least three precipitation shocks
during the school year and the student’s school is located within Bmeters of some risk area.
This parameter n allows us tomeasure the duration of precipitation events in themonths that
the students are at school. Assuming n ≥ 3 also allows us to control rainfall events that may
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occur sporadically in just one or two months. In addition, natural disasters caused by
excessive rainfall are strongly associated with the accumulation of water on the surface that
occurs just in longer periods of exposure.

In our main specification, we assume B 5 200 m (218,723 yards). Therefore, treated
students are enrolled in schools within 200 m of a risk area in municipalities that were
exposed to at least three precipitation shocks during the school year. In turn, students in the
control group are enrolled in schools more than 200 m away from a risk area and those never
exposed to a precipitation shock.

We consider that students who attend school near a risk area are more likely to live near
risk areas as well. This assumption is suitable for some reasons. First, in general, students
enrolled in Brazilian public schools are poor [9]. For poor students the cost of attending a
school far from their residence is not negligible, implying that they likely are also highly
exposed to precipitation shocks. Second, there is a large literature documenting that the
distance of student residence to school is an important factor of school choice (Carneiro, Das,
&Reis, 2022). Approximately 200,000 students per year studying in a school within 200m of a

Figure 1.
Location of risk areas

in Brazil
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risk area in the 826 Brazilian municipalities considered in the analysis. This represents
approximately 1

4
of the students in these municipalities.

Since there is no appropriate criterion for defining exposure to risk areas by distance from
the student’s school in the presentation of the results, we change the value of the parameter B
for the distances: B 5 500 and B 5 800 m. This variation prevents the conclusions of this
article from being considered arbitrary and associated with a specific parameterization.

We define the occurrence of a rainfall shock in municipality m in the school year t as
follows:

shockmt ¼ 1 precipmjt > kσmj

� �
(2)

where, precipmjt is the amount of precipitation in municipalitym in the school year t in month
j. In general, the SAEB exam is applied in the months of October and November, then j refers
to January through September. In turn, σmj is the standard deviation of the historical mean
rainfall in municipalitym in month j. The historical average was calculated from the last 30
years in each municipality (1976–2006). Finally, k is a parameter that measures the intensity
of the precipitation. In presenting the results, we varied the parameter k by k5 1, 1.5, 2. Thus,
k5 1 implies that the shock variable measures the incidence of a rainfall shock for which the
intensity was greater than one standard deviation above the historical average.

This definition of extreme precipitation shock has the advantage of being very flexible,
allowing a more complete characterization of the impact of precipitation shocks on student
performance. That is, it is possible to vary different parameters associated with the
precipitation shock and thereby understand in more detail how such shocks affect student
performances.

2.2.2 Econometric specification. This paper aims to identify the causal effect of extreme
precipitation shocks on the 9th-grade performance of vulnerable students, i.e. those who
attend schools near risk areas. We assume that these students have a high probability of
living near risk areas as well [10]. The control group are those who live within 1,000 m of the
border of a risk area and students who live near risk areas (within 200 m of their border) but
were not affected by the precipitation shock.

We estimate the following econometric specification:

Y ismet ¼ β0 þ γTmet þ β0Xismt þ θs þ δet þ εismet (3)

This kind of specification is known as the ring method. The ring method is motivated by the
fact that since the treated and control units are all very close in spatial location, then shocks
over time should be common across units in the neighborhood (Butts, 2022). The variable of
interest (Yismet) is the performance, in math or language, of 9th graders of student i in school s
in municipalitym in state e in year t. Tmet represents the rainfall shock in municipalitym in
state e in school year t.Xismt is a vector of student characteristics, such as gender (girls), racial
status (black and brown), student age and mother’s education [11]. θs represents school fixed
effects that absorb idiosyncratic factors related to school characteristics, such as number of
students, quality of teachers, etc. Note that this fixed effect also absorbs factors related to
school location, such as socioeconomic conditions, violence, urban amenities around the
school, etc. The inclusion of school fixed effects allows us to obtain the relevant
counterfactual for a school’s nearly to risk areas: a school of the same type which may or
may not be affected by an extreme precipitation shock. At last, δet represents the year-fixed
effect interacted with the state, which aims to absorb time-varying factors across the states,
such as state educational policies, economic activity, etc. The parameter of interest is γ which
measures the occurrence of an extreme precipitation shock on student performance.

Our main identification assumption is that precipitation shock is exogenous to student
performance when controlled by the student factors, school and state-by-year fixed effects,

ECON



and considering that the treated and control schools are all very close in spatial location,
that is:

E½Yismet jXismt; θs; δet;Tmet � ¼ E½Y ismetjXismt ; θs; δet � (4)

The main threat to the identification is if the students predict the occurrence of the extreme
weather event and migrate to a different school. This may affect their performance and is
correlated with unobservable factors. However, this is a very difficult possibility. First, we
test in the robustness section that the precipitation shock does not change significantly the
class size of the treated school in comparison with the control schools. This suggests that
students do not migrate to a different school in response to a precipitation shock, implying
that students do not predict the occurrences of precipitation shocks. Second, predicting the
occurrence of extreme weather events is hard even for experts, thus is not expected that
students, or their parents, predicted adequately the occurrence of such events.

3. Results
3.1 Main results
In this section, we present the main results. Table 1 reports the treatment effect of an extreme
precipitation shock on the performance of students studying close (less than 200 m) to a risk
area. To analyze the sensitivity of the estimates, we vary the specifications of the econometric
model. In column 1, only school and year-fixed effects are added. In column 2, we add some
controls at the student level, such as gender (female as a reference), self-reported racial status
(black and brown as a reference), the student’s age and the education of the student’s mother
or father. In column 3, time-varying state fixed effects are included. This specification, in
column 3, represents our preferred model. Finally, in columns 4 and 5, the same specification

(1) (2) (3) (4) (5)
k 5 1.5 k 5 1.5 k 5 1.5 k 5 1.0 k 5 2.0

Panel A: math
Treatment �0.0663*** �0.0915*** �0.0559** 0.0218 �0.130*

(0.0147) (0.0119) (0.0225) (0.0218) (0.0751)
Obs 10,35,266 967,338 967,338 967,338 967,338
R-2 0.076 0.112 0.113 0.113 0.113
School fixed effect Y Y Y Y Y
Year-fixed effect Y Y N N N
Student control N Y Y Y Y
State-year fixed effect N N Y Y Y

Panel B: language
Treatment �0.0688*** �0.0947*** �0.0396* 0.0138 �0.113*

(0.012) (0.0119) (0.0218) (0.0236) (0.0613)
Obs 10,35,266 967,338 967,338 967,338 967,338
R-2 0.068 0.127 0.128 0.128 0.128
School fixed effect Y Y Y Y Y
Year-fixed effect Y Y N N N
Student control N Y Y Y Y
State-year fixed effect N N Y Y Y

Note(s): Table 1 shows the estimates of the impact of a precipitation shock in the performance of students in
math and language. Significance: ***1, **5 and *10%. Standard errors clustering at municipality level. Own
elaboration

Table 1.
Effect of extreme

precipitation shock on
the performance of the
students at-risk areas
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from column 3 is replicated, with the only difference being the intensity of the shocks, set to 1
(k5 1) and 2 (k5 2) standard deviations of precipitation above the municipality’s historical
average. Since Brazil has large population differences in its municipalities, we weighted the
estimates by themunicipality’s population size. In addition, the standard errors are estimated
by clustering at the municipality level, following recommendations from Abadie, Athey,
Imbens, and Wooldridge (2017).

Panel A presents the estimates for 9th-grade math performance. The occurrence of an
extreme rainfall shock reduces mathematics performance by 0.055σ (column 3). In turn,
performance in language, presented in panel B, indicates that an extreme precipitation shock
negatively impacts by 0.04σ (column 3). Modifications in the econometric specification do not
affect the findings, marginally changing the effect size. The estimates are sensitive to the
introduction of time-varying state fixed effects, suggesting that local state actions may
contribute to moderating the impact of extreme precipitation on student performance inmath
and language.

Putting the estimates in perspective, we also calculated the effect of an extreme
precipitation shock in terms of months of effective learning. The impact of an extreme
precipitation shock corresponds to a loss of 1.48 and 2months of effective learning during the
school year for language andmathematics, respectively [12]. This implies that approximately
20% of the school year is lost due to extreme precipitation shocks.

The estimates suggest that extreme rainfall events affect learning. Literature focused on
rural areas, rainfall shocksmay increase student dropout rates (Shah&Steinberg, 2017; Baez,
De la Fuente, & Santos, 2010; Ferreira & Schady, 2009). Due to the composition change in
schools, these studies do not identify the effect on learning adequately. In the robustness
tests, we show that our estimates do not affect the class composition. Then, our results
suggest that the rainfall shock causes a learning loss and not a school attendance reduction.
This result provides evidence that a different type of policy mitigation is required, focusing
on learning recovery.

Given the trends of climate change and the resulting increase in the occurrence and
intensification of weather events, students from municipalities affected by extreme
precipitation shocks tend to widen the gap in terms of skill accumulation compared to
students frommunicipalities that are less affected and also in comparison with students from
municipalities that live further away from risk areas.

Columns 4 and 5 show that the intensity of the shock matters for the size of the
average effect. Precipitation shocks of low magnitudes, such as 1 standard deviation
above the average precipitation (column 4), have no significant effects on student
performance. On the other hand, if a high-intensity shock is considered, such as 2
standard deviations above average rainfall (column 5), the negative impact on
performance is significant and has a high impact, �0.13σ and �0.11σ in mathematics
and language, respectively.

Considering the main specification, the magnitude of the impact is small, according to
Kraft (2020)’s classification. Kraft (2020) classifies effect sizes according to a meta-analysis
containing 750 Randomized Control Trials (RCTs) for developed countries. However, some
additional aspects are important. First, the effect size depends on the magnitude of the
extreme event. In Table 1, the very extreme events, k5 2, have amedium effect size according
to Kraft’s classification. Second, the size of the effect can be sensitive to the stage of education.
We focused only on 9th-grade students. Thirdly, although small, the frequency of events
during the school year can increase the size of the impact.

Given this variation according to the intensity of the precipitation shock, we will focus
specifically on the results for k 5 1.5. Table 2 presents the results by varying the minimum
distance of schools from risk areas. As the minimum distance between schools and risk areas
increases, the less likely the student is to live near such a risk area, and the impact of an
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extreme precipitation shock is expected to decrease. Column 1 replicates the results of the
preferred specification from Table 1 (column 3). Columns 2 and 3 present the same
specification, considering B5 500 and B5 800 m as the minimum distance of schools from
risk areas, respectively.

The results suggest that the inclusion of schools more distant from risk areas reduces the
effect of the precipitation shock on student performance. The further away a school is from a
risky area, the less likely the student is to live near such an area, and therefore, the less the
impact of precipitation shocks in urban areas tends to be. Thus, the occurrence of such shocks
generates differences in terms of human capital accumulation between (affected and not
affected by precipitation shocks) and within municipalities (schools near or far from a risk
area) that have risk areas. This evidence may contribute to intra-municipal wage differences,
partly explaining the higher income inequality in more urban municipalities (Wheeler, 2004;
Glaeser et al., 2009; Ahlfeldt &Pietrostefani, 2019). Since individuals living near risk areas are
adversely affected by precipitation shocks, the difference in human accumulation among
those living farther away from risk areas increases, potentially resulting in differences in
lifetime earnings.

A further important aspect of the magnitude of the effect of weather events is duration.
Specifically, in the case of precipitation shocks, the duration of the event is critical
because the highest costs arising from these types of weather phenomena occur through
the accumulation of water in the soil. Zhang, Li, Ma, Song, and Song (2018) and Islam and
Ahsanuzzaman (2020) show that, especially in the case of rainfall disasters, such as
floods, the duration of the event is directly related to the size of the impact on health and
education. In other words, shocks that occur in just one month may not necessarily cause
damage because the soil can absorb some of the rainwater. However, the occurrence of
other subsequent shocks will be more difficult to absorb because the soil will be soaked
due to the previous shocks.

(1) (2) (3)
B 5 200 m B 5 500 m B 5 800 m

Panel A: math
Treatment �0.0559** �0.0391** �0.0124

(0.0225) (0.0164) (0.0170)
Observations 967,338 1,827,887 2,658,716
R-2 0.128 0.131 0.121
School fixed effect Y Y Y
Year-fixed effect N N N
Student controls Y Y Y
State-by-year fixed effect Y Y Y

Panel B: language
Treatment �0.0396* �0.0307** �0.00403

(0.0218) (0.0138) (0.0131)
Observations 967,338 1,827,887 2,658,716
R-2 0.128 0.131 0.136
School fixed effect Y Y Y
Year-fixed effect N N N
Student controls Y Y Y
State-by-year fixed effect Y Y Y

Note(s): Table 2 presents the results of estimation of the impact of a precipitation shock on student
performance in language and math considering different distances from schools to risk areas. Significance:
***1, **5 and *10%, estimated standard errors clustering at the county level. Own elaboration

Table 2.
Effect of extreme

precipitation shock on
the performance of

vulnerable students –
different distances

from risk areas
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Figure 2 presents the estimation of the preferred model varying the amount of extreme
precipitation shocks that students are exposed to (n5 1, 2, 3 and 4) [13]. It was limited to the
occurrence of a maximum of four shocks during the school year because the number of
shocks above four is quite rare and, thus, the estimation of the standard errors is hindered.

The results suggest that occasional extreme shocks, n5 1 or 2, are not sufficient to affect
student performance. However, as more shocks occur, n5 3 and 4, not only does the effect of
the extreme precipitation shock become relevant, but it also becomes more intense. Students
living near risk areas who are affected by four extreme precipitation shocks during the school
year reduce their performance in language and math by 0.09σ and 0.13σ, respectively. This
implies a loss of approximately 3.3 and 4.8months of effective learning in language andmath,
respectively. Thamtanajit (2020) found a similar learning loss effect in Thailand as a result of
severe flooding that occurred in 2011.

Moreover, this result is in line with the empirical finding in other contexts that
precipitation shocks in risk areas become relevant when there is difficulty in rainwater runoff
(Zhang et al., 2018). In the case of education performance, this effect increases according to the
occurrence of more than three shocks during the school year.

3.2 Robustness
Different robustness tests were performed to check the reliability and sensitivity of the results.

3.2.1 Placebo. To verify whether the results are driven by previous trends in the outcome
variables, we conducted a placebo test. As the SAEB exam is conducted biannually (2007,
2009, 2011, 2013, 2015), we use the same econometric specification, considering shocks in
periods when there was no SAEB (2008, 2010, 2012, 2014, 2016). That is, we test whether a
precipitation shock that occurs after the SAEBaffects student performance in previous years.

The results are presented in Supplemental Material (Appendix 1). It is observed that
extreme precipitation shocks in the future (one year after the SAEB) do not affect students’
performance in the previous year. This rules out the possibility that the findings are driven by
previous trends between treated and untreated students.

3.2.2 Change in class composition. Extreme precipitation shocks can also affect average
student performance by changing the composition of students in the school. For example, if
the precipitation shock causes a higher dropout of high-achieving students, then the effect of
the shock is not due to learning difficulty but rather to potential composition change, i.e. a
higher proportion of students with low prior performance.

To check whether there is a composition change as a result of precipitation shocks, we
estimate a school-level model similar to the main specification. As outcome variables, we use

Figure 2.
Intensity of the effect of
more precipitation
shocks
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the dropout rate, the reprobation rate and the number of students per classroom in the 9th
grade of elementary school. We expected that the occurrence of a precipitation shock would
not modify the composition of the classroom.

The results, reported in Supplemental Material (Appendix 2), show that extreme
precipitation shocks of at least three months in schools near risk areas do not significantly
impact any of the dropout rates, the reprobation rate and the class size. That is, there is no
evidence that the class composition changes because of the occurrence of extreme
precipitation shocks. Therefore, the main estimated effect is explained only by direct
learning loss and not by the classroom composition change.

This result is interesting because it is different from that observed in rural areas. In rural
areas, where extreme rainfall events increase the productivity of the agricultural sector, it
implies a reduction in student attendance (Shah & Steinberg, 2017; Baez et al., 2010; Ferreira
& Schady, 2009). In our case, we identified that extreme rainfall shocks more directly affect
students’ learning in urban areas.

3.2.3 Additional specifications. We test alternative specifications. First, we analyze the
results for the same specification as Equation 3, excluding from the sample the 10% largest
and the 10% smallest municipalities. Since Brazil is a country with a high difference in terms
of population among itsmunicipalities, our goal is to verifywhether the results are dependent
on the municipalities outliers. The results are similar in terms of magnitude; however, for
language, the estimates become non-significant, suggesting that there is a dependence of the
variance estimated for language on the outliers municipalities.

In turn, the same estimation ofEquation 3wasperformedwithoutweightingby thepopulation
size of the municipalities. The results are quite similar in terms of magnitude and significance.

Finally, the validity of the difference-in-difference strategy requires that the trends in the
outcome variables be similar. The presence of nonlinearities in the outcome variables can
invalidate the interpretation of this type of empirical strategy. In general, such nonlinearities
arise as a result of idiosyncratic interactions with local characteristics. To minimize such a
possibility, the main model was re-estimated considering the inclusion of four local variables
that interacted with t years. The objective of this exercise is to capture potential time-varying
pre-trends that may affect the results.

The variables considered are related to student performance on standardized tests. They
are Income inequality (Gini index), the proportion of poor, per capita income, municipal HDI
and the proportion of elderly people [14]. The estimated results are similar to themain results,
suggesting that there are no nonlinearities arising from pre-trends. The estimates of these
additional exercises are reported in the appendix.

3.3 Heterogeneous effects
Extreme precipitation shocks may differently affect the performance of specific groups of
students. To check this possibility, we conducted a heterogeneous effect analysis.
We considered four student characteristics that could potentially moderate the impact of the
extreme precipitation shock. The first category is student gender. There is broad evidence that
girls are affected by economic and natural shocks (Neumayer & Pl€umper, 2007; Enarson,
Fothergill, & Peek, 2018). The second characteristic refers to educational quality. The goal is to
find outwhether the effect of the precipitation shock is greater on students who report that they
have already failed a school year or dropped out of school. The quality of the student may
mitigate the effect of precipitation shock on performance.

Finally, it was verified whether the precipitation shock has a differential effect on students
with different SESs. It is difficult to measure the SES of students with our data because
precipitation shocks can also affect the socioeconomic characteristics of students. Then,
utilizing self-reported variables of family assets may be “bad control.” Therefore, an
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alternative measure that is less sensitive to precipitation shocks consists of using the SES of
students and the relationship between family size in the household and the number of
bedrooms. Both family size and number of bedrooms are less affected by extreme
precipitation shocks [15]. Thus, we posit that the lower the ratio between family size and the
number of rooms in the residence, the higher the SES of the students is expected to be. In other
words, a family of high SES is one that has a large number of bedrooms for its members. To
facilitate the interpretation of the results, an indicator variable was created that receives a
value of 1 if the ratio is less than 2 (high SES) and zero otherwise. Thus, if there is a negative
interaction effect between the socioeconomic measure and the occurrence of precipitation
shocks, it implies that students from higher socioeconomic families are more negatively
affected than students from lower socioeconomic families.

To estimate the heterogeneous effects of each of these variables, henceforth, factorismet is
interacted with the variable Tmet. Then the equation to be estimated is defined by:

Y ismet ¼ β0 þ γTmet þ αTmet 3 factorismet þ β1factorismet þ β0Xismt þ θs þ δet þ εismet (5)

where, α captures the differential effect of the specific student characteristic i (factorismet)
when affected by an extreme precipitation shock (Tmet) relative to the control group.

Table 3 presents the results by considering the preferred specification. [16] Panel A
presents the results for math and B for language. The results suggest that girls are more
sensitive to such extreme precipitation shocks than boys. This result confirms a large body of

(1) (2) (3) (4)

Panel A: math
Treatment 0.00599 �0.104*** �0.0626*** �0.0423*

(0.0255) (0.0231) (0.0216) (0.0241)
Treatment 3 Girl �0.115***

(0,0253)
Treatment 3 Reproved 0.121***

(0.0297)
Treatment 3 Dropout 0.152***

(0.0523)
Treatment 3 SES �0.0288***

(0.0103)
Panel B: language
Treatment 0.0406 �0.0900*** �0.0557*** �0.00878

(0.0253) (0.0226) (0.0214) (0.0236)
Treatment 3 Girl �0.149***

(0.0247)
Treatment 3 Reproved 0.127***

(0.0317)
Treatment 3 Dropout 0.248***

(0.0591)
Treatment 3 SES �0.0648***

(0.0107)
School fixed effect Y Y Y Y
Year-fixed effect N N N N
Student controls Y Y Y Y
State-by-year fixed effect Y Y Y Y

Note(s): Table 3 presents the heterogeneous results from estimation of the impact of a precipitation shock on
student performance in Portuguese and mathematics. Significance: ***1, **5 and *10%, estimated standard
errors clustering at the county level. Own elaboration

Table 3.
Heterogeneous effect
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literature indicating much greater sensitivity on the part of girls. Bj€orkman-Nyqvist (2013)
found that rainfall shocks also have a more prevalent effect on girls than boys. This evidence
is related to how parents’ values of child labor differ across sexes as a consequence of income
shock. In addition, the heterogeneous effect on girls does not depend on the type of natural
disaster or the educational level. Di Pietro (2018) found that the L’Aquila earthquake in Italy
reduced the learning gains in girls more than in boys for undergraduate students.

On the other hand, students with worse prior performance are less affected by the
precipitation shock than other students, given that the differential effect of having already
reproved or having dropped out of school before the 9th grade of elementary school is positive
and significant. This means that precipitation shocks tend to impact students with high prior
performance more strongly.

Finally, having a low (high) SES reduces or increases the effect of extreme precipitation
shocks on students. The impact of the interaction between students with higher SES and the
precipitation shock is negative, suggesting that such students are more negatively affected.
Chetty, Friedman, and Rockoff (2014) examining the effects of teachers on students with
different SESs, concluded that the effect of teacher quality is greater for students with high
SES. This evidence is explained by the high sensitivity of high SES to changes in school
quality. This result is referred to by other studies, such as Jackson, Porter, Easton, and Kiguel
(2020), Lockwood and McCaffrey (2009). We interpret our results in a similar way: extreme
rainfall shocks can affect school quality by reducing students’ learning activities and,
consequently, have a greater effect on students with high SES. In summary, girls, students
with high prior performance and relatively higher SES are the most affected by extreme
precipitation shocks.

4. Conclusion
The present paper revealed that an extreme rainfall shock adversely affects the performance
in language and math in 9th grade of students most vulnerable to weather events, i.e. those
who study near risk areas. This effect varies according to the intensity and duration of the
shock. The robustness tests suggest that the extreme precipitation shock does not
significantly alter class composition, indicating that the effect of the extreme precipitation
shock is directly associated with learning loss.

Furthermore, it was found that such shocks have a strong differential impact by gender,
by students’ previously accumulated skills and by the SES of students’ families. Girls,
students with high prior educational skills and students with higher SES are more strongly
negatively affected.

In addition to the identification strategy and the robustness test, a limitation of our
empirical design is the target of the effect of extreme rainfall shocks on the school-level, not
directly on students. In our empirical strategy, due to data restrictions, we focused on
students who attend schools near risky areas. However, not all of these students may be
equally exposed to extreme weather shocks. This suggests that, with identification at the
individual level, the impact of extreme events may be greater.

Thus, this paper shows that extreme rainfall shocks generate social costs not only related
to infrastructure loss but also to human capital accumulation. Due to the quasi-exogenous
occurrence of these events, an increase in the difference in human capital accumulation is
expected among individuals not affected by such shocks or who are at an adequate distance
from risk areas. An important implication of this result is the expected increase in within-
municipality inequality caused by the loss of human capital by individuals living near the
risk area.

Many policies can be implemented to mitigate the effects of extreme rainfall events on
education. However, standard policies to reduce the effect of extreme weather events, as
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reliable information to monitor risks and vulnerabilities, may not work to minimize the
impact on learning. Since the impacts of rainfall shocks are more prevalent among higher-
ability students, one potential policy is to develop programs that support learning after such
shocks, such as flexible safety nets or programs focused on learning recovery. These policies
should focus on schools close to areas of vulnerability.

Future research should focus on identifying policies that help mitigate the effects of
extreme rainfall events on human capital accumulation. In addition, another strand could
focus on measuring the potential channels of climate shocks on students living near risk
zones. Both aspects would help to design public policies focused on adapting this population
to climate change.

Notes

1. See for example: (Deschênes & Greenstone, 2007; Burke, Hsiang, & Miguel, 2015; Dell, Jones, &
Olken, 2012).

2. SAEB is conducted biannually, so the student variables are available for the years 2007, 2009, 2011,
2013 and 2015.

3. The SAEB is usually held in October or November of odd years. Therefore, we consider the months
of January through September of each year as school months.

4. We calculate the average historical precipitation using the last 30 years of precipitation (1976–2006)
of each month and municipality.

5. Instituto Nacional de Estudos e Pesquisas Educacionais An�ısio Teixeira.

6. To access the address of all public elementary schools in Brazil, we use the following link: http://
idebescola.inep.gov.br/ideb/consulta-publica.

7. IBGE is a national agency responsible to document and analyze geographic and economic data in
Brazil.

8. Appendix available upon request to the authors.

9. In Brazil, approximately 74% of the family of public students participate in Bolsa Fam�ılia program,
a cash-transfer program focus on poor (INEP).

10. There is a large literature documenting that distance from residence to schools is an important
factor in school choice, especially in developing countries (Carneiro et al., 2022).

11. We measured maternal education by a categorical variable, as follows: 1 indicates “Never attended
or did not complete 4th grade,” 2 indicates “Completed 4th grade but did not complete 8th grade,” 3
indicates “Completed 8th grade but did not complete high school,” 4 indicates that “Completed high
school but did not complete college,” 5 indicates the mother who completed college, and 6 indicates
the mother who completed a degree.

12. According to dos Santos, Berlingeri, and de Braga Castilho (2017) during the school year
(10 months), the student raises approximately 0.27σ in terms of proficiency. Thus, such effective

months of learning were calculated as follows: 103bγ
0:27

, where: bγ is the estimated effect reported in
column 3 of Table 1.

13. The estimated econometric model was: Yismet ¼ β0 þ
P4

j¼1γj 3Pmt þ β0Xismt þ θs þ δet þ εismet,
where: Pmt is quantity of precipitation shocks occurring in the municipality m in the school year t.

14. A higher proportion of elderly people may affect the demand for municipal resources, from
education to health.

15. Extreme precipitation shocks can cause the deaths of members of the student’s family and also
reduce the number of rooms. However, these events that cause such changes are much rarer and
geographically localized.
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16. This specification includes school-level fixed effects, time-varying county fixed effects, and control
for students. Themodel is weighted by county population size and standard errors are estimated by
clustering at the county level.
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