Search results

1 – 10 of 148
Article
Publication date: 19 July 2019

Elaine Lim and Yew Mun Hung

By solving a long-wave evolution model numerically for power-law fluids, the authors aim to investigate the hydrodynamic and thermal characteristics of thermocapillary flow in an…

Abstract

Purpose

By solving a long-wave evolution model numerically for power-law fluids, the authors aim to investigate the hydrodynamic and thermal characteristics of thermocapillary flow in an evaporating thin liquid film of pseudoplastic fluid.

Design/methodology/approach

The flow reversal attributed to the thermocapillary action is manifestly discernible through the streamline plots.

Findings

The thermocapillary strength is closely related to the viscosity of the fluid, besides its surface tension. The thermocapillary flow prevails in both Newtonian and pseudoplastic fluids at a large Marangoni number and the thermocapillary effect is more significant in the former. The overestimate in the Newtonian fluid is larger than that in the pseudoplastic fluid, owing to the shear-thinning characteristics of the latter.

Originality/value

This study provides insights into the essential attributes of the underlying flow characteristics in affecting the thermal behavior of thermocapillary convection in an evaporating thin liquid film of the shear-thinning fluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 October 2019

Kasra Ayoubi Ayoubloo, Mohammad Ghalambaz, Taher Armaghani, Aminreza Noghrehabadi and Ali J. Chamkha

This paper aims to theoritically investigate the free convection flow and heat transfer of a non-Newtonian fluid with pseudoplastic behavior in a cylindrical vertical cavity…

Abstract

Purpose

This paper aims to theoritically investigate the free convection flow and heat transfer of a non-Newtonian fluid with pseudoplastic behavior in a cylindrical vertical cavity partially filled with a layer of a porous medium.

Design/methodology/approach

The non-Newtonian behavior of the pseudoplastic liquid is described by using a power-law non-Newtonian model. There is a temperature difference between the internal and external cylinders. The porous layer is attached to the internal cylinder and has a thickness of D. Upper and lower walls of the cavity are well insulated. The governing equations are transformed into a non-dimensional form to generalize the solution. The finite element method is used to solve the governing equations numerically. The results are compared with the literature results in several cases and found in good agreement.

Findings

The influence of the thickness of the porous layer, Rayleigh number and non-Newtonian index on the heat transfer behavior of a non-Newtonian pseudoplastic fluid is addressed. The increase of pseudoplastic behavior and increase of the thickness of the porous layer enhances the heat transfer. By increase of the porous layer from 0.6 to 0.8, the average Nusselt number increased from 0.15 to 0.25. The increase of non-Newtonian effects (decrease of the non-Newtonian power-law index) enhances the heat transfer rate.

Originality/value

The free convection behavior of a pseudoplastic-non-Newtonian fluid in a cylindrical enclosure partially filled by a layer of a porous medium is addressed for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1994

K.A. Pericleous

The flow development and heat transfer in a differentially heated cavitycontaining a non‐Newtonian fluid is studied using CFD techniques.Investigations are made for a fluid…

Abstract

The flow development and heat transfer in a differentially heated cavity containing a non‐Newtonian fluid is studied using CFD techniques. Investigations are made for a fluid obeying a power‐law type behaviour, for a nominal Rayleigh number of 105. Both dilatant and pseudoplastic regimes are considered and the Nusselt number is obtained for a range of power‐law index values. The results, given in a graphical and tabular form, suggest that deviations from Newtonian stress‐strain behaviour can lead to large changes in overall heat transfer. These changes are due to the behaviour of the wall boundary layers. In the dilatant, or shear‐thickening regime, the isothermal wall layers are thick and slow‐moving; as a consequence, buoyancy induced flow affects the whole of the cavity volume. In contrast, the pseudoplastic (or shear‐thinning) regime leads to thin, fast‐moving wall layers whose effect does not propagate to the core of the cavity which remains stagnant. This behaviour, which is directly attributable to the local value of the fluid viscosity, causes the average Nusselt number to decrease with the power‐law index, n. Pseudoplastic fluids are therefore better at conducting heat than Newtonian fluids, and conversely dilatant fluids are worse. The information contained in this paper is of general interest to workers in heat transfer, but is more specifically relevant to researchers in non‐Newtonian fluids. Example applications include biotechnology, where close temperature control of bio‐cultures in enclosed vessels is required, the food processing industry, the metals casting industry and areas where heat transfer in fine suspensions is required.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 4 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 December 2022

Darya Loenko, Hakan F. Öztop and Mikhail A. Sheremet

Nowadays, the most important challenge in mechanical engineering, power engineering and electronics is a development of effective cooling systems for heat-generating units. Taking…

Abstract

Purpose

Nowadays, the most important challenge in mechanical engineering, power engineering and electronics is a development of effective cooling systems for heat-generating units. Taking into account this challenge, this study aims to deal with computational investigation of thermogravitational energy transport of pseudoplastic nanoliquid in an electronic chamber with a periodic thermally producing unit placed on the bottom heat-conducting wall of finite thickness under an influence of isothermal cooling from vertical side walls.

Design/methodology/approach

The control equations formulated using the Boussinesq approach, Ostwald–de Waele power law and single-phase nanofluid model with experimentally based correlations of Guo et al. for nanofluid dynamic viscosity and Jang and Choi for nanofluid thermal conductivity have been worked out by the in-house computational procedure using the finite difference technique. The impact of the Rayleigh number, nanoadditives concentration, frequency of the periodic heat generation from the local element and thickness of the bottom solid substrate on nanoliquid circulation and energy transport has been studied.

Findings

It has been found that a raise of the nanoadditives concentration intensifies the cooling of the heat-generating element, while a growth of the heat-generation frequency allows reducing the amplitude of the heater temperature.

Originality/value

Mathematical modeling of a pseudoplastic nanomaterial thermogravitational energy transport in an electronic cabinet with a periodic thermally generating unit, a heat-conducting substrate and isothermal cooling vertical surfaces to identify the possibility of intensifying heat removal from a heated surface.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 December 2020

Thameem Basha Hayath, Sivaraj Ramachandran, Ramachandra Prasad Vallampati and O. Anwar Bég

Generally, in computational thermofluid dynamics, the thermophysical properties of fluids (e.g. viscosity and thermal conductivity) are considered as constant. However, in many…

Abstract

Purpose

Generally, in computational thermofluid dynamics, the thermophysical properties of fluids (e.g. viscosity and thermal conductivity) are considered as constant. However, in many applications, the variability of these properties plays a significant role in modifying transport characteristics while the temperature difference in the boundary layer is notable. These include drag reduction in heavy oil transport systems, petroleum purification and coating manufacturing. The purpose of this study is to develop, a comprehensive mathematical model, motivated by the last of these applications, to explore the impact of variable viscosity and variable thermal conductivity characteristics in magnetohydrodynamic non-Newtonian nanofluid enrobing boundary layer flow over a horizontal circular cylinder in the presence of cross-diffusion (Soret and Dufour effects) and appreciable thermal radiative heat transfer under a static radial magnetic field.

Design/methodology/approach

The Williamson pseudoplastic model is deployed for rheology of the nanofluid. Buongiorno’s two-component model is used for nanoscale effects. The dimensionless nonlinear partial differential equations have been solved by using an implicit finite difference Keller box scheme. Extensive validation with earlier studies in the absence of nanoscale and variable property effects is included.

Findings

The influence of notable parameters such as Weissenberg number, variable viscosity, variable thermal conductivity, Soret and Dufour numbers on heat, mass and momentum characteristics are scrutinized and visualized via graphs and tables.

Research limitations/implications

Buongiorno (two-phase) nanofluid model is used to express the momentum, energy and concentration equations with the following assumptions. The laminar, steady, incompressible, free convective flow of Williamson nanofluid is considered. The body force is implemented in the momentum equation. The induced magnetic field strength is smaller than the external magnetic field and hence it is neglected. The Soret and Dufour effects are taken into consideration.

Practical implications

The variable viscosity and thermal conductivity are considered to investigate the fluid characteristic of Williamson nanofluid because of viscosity and thermal conductivity have a prime role in many industries such as petroleum refinement, food and beverages, petrochemical, coating manufacturing, power and environment.

Social implications

This fluid model displays exact rheological characteristics of bio-fluids and industrial fluids, for instance, blood, polymer melts/solutions, nail polish, paint, ketchup and whipped cream.

Originality/value

The outcomes disclose that the Williamson nanofluid velocity declines by enhancing the Lorentz hydromagnetic force in the radial direction. Thermal and nanoparticle concentration boundary layer thickness is enhanced with greater streamwise coordinate values. An increase in Dufour number or a decrease in Soret number slightly enhances the nanofluid temperature and thickens the thermal boundary layer. Flow deceleration is induced with greater viscosity parameter. Nanofluid temperature is elevated with greater Weissenberg number and thermophoresis nanoscale parameter.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 September 2017

N.B. Naduvinamani, Siddharam Patil and S.S. Siddapur

Nowadays, the use of Newtonian fluid as a lubricant is diminishing day by day, and the use of non-Newtonian fluids has gained importance. This paper presents an analysis of the…

Abstract

Purpose

Nowadays, the use of Newtonian fluid as a lubricant is diminishing day by day, and the use of non-Newtonian fluids has gained importance. This paper presents an analysis of the static characteristics of Rayleigh step slider bearing lubricated with non-Newtonian Rabinowitsch fluid, which has not been studied so far. The purpose of this paper is to derive the modified Reynolds equation for Rabinowitsch fluids for two regions and to obtain the optimum bearing parameters for the Rayleigh step slider bearings.

Design/methodology/approach

The governing equations relevant to the problem under consideration are derived. The modified Reynolds equation is derived, and it is found to be highly non-linear and hence small perturbation method is adopted to find solution.

Findings

From this study it is found that there is an increase in the load-carrying capacity, pressure and frictional coefficients for dilatant fluids as compared to the corresponding Newtonian case. Further, for dilatant lubricants the maximum load-carrying capacity is attained for the slightly larger values of entry region length of Rayleigh step bearing as compared to Newtonian and pseudoplastic lubricants.

Originality/value

Rabinowitsch fluid is used for the study of lubrication characteristics of Rayleigh step bearings. The author believes that the paper presents these results for the first time.

Details

Industrial Lubrication and Tribology, vol. 69 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 April 2014

Cheng-Hsing Hsu, Jaw-Ren Lin, Lian-Jong Mou and Chia-Chuan Kuo

– The purpose of this paper is to present a theoretical study of non-Newtonian effects in conical squeeze-film plates that is based on the Rabinowitsch fluid model.

Abstract

Purpose

The purpose of this paper is to present a theoretical study of non-Newtonian effects in conical squeeze-film plates that is based on the Rabinowitsch fluid model.

Design/methodology/approach

A non-linear, modified Reynolds equation accounting for the non-Newtonian properties following the cubic stress law equation is derived. Through a small perturbation method, first-order closed-form solutions are obtained.

Findings

It is found that the non-Newtonian properties of dilatant fluids increase the load capacity and lengthen the response time as compared to the case using a Newtonian lubricant; however, the non-Newtonian behaviors of pseudoplastic lubricants result in reverse influences.

Originality/value

Numerical tables for squeeze-film loads of conical plates are also provided for engineering applications.

Details

Industrial Lubrication and Tribology, vol. 66 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 August 2013

Jaw‐Ren Lin, Chi‐Ren Hung, Li‐Ming Chu, Wei‐Liang Liaw and Ping‐Hui Lee

In the present paper, the authors aim to analyze the non‐Newtonian effects of Rabinowitsch fluids on the squeeze film performances between wide parallel rectangular plates.

117

Abstract

Purpose

In the present paper, the authors aim to analyze the non‐Newtonian effects of Rabinowitsch fluids on the squeeze film performances between wide parallel rectangular plates.

Design/methodology/approach

Based on the cubic‐stress equation model, a nonlinear squeeze‐film Reynolds‐type equation has been derived. By using a small perturbation method, a closed‐form solution of the squeeze film characteristics is derived for the parallel plates considering the non‐Newtonian effects of cubic stresses.

Findings

Comparing with the Newtonian‐lubricant parallel plates, the effects of non‐Newtonian cubic‐stress flow rheology provide significant influences upon the squeeze film characteristics.

Originality/value

It is shown that the non‐Newtonian pseudoplastic behavior reduces the load capacity and the response time; however, the effects of non‐Newtonian dilatant lubricant provide an increase in the load‐carrying capacity and therefore lengthen the response time of parallel squeeze‐film plates.

Details

Industrial Lubrication and Tribology, vol. 65 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 April 2017

Zefeng Jing, Shuzhong Wang and Zhende Zhai

The purpose of this paper is to investigate the combined effects of slip and rheological parameters on the flow and heat transfer of the Herschel-Bulkley fluid.

Abstract

Purpose

The purpose of this paper is to investigate the combined effects of slip and rheological parameters on the flow and heat transfer of the Herschel-Bulkley fluid.

Design/methodology/approach

The combinative dimensionless parameter method is introduced into the equations of the slip flow and heat transfer to make the discussion more comprehensive. More specifically, the slip and rheological parameters are transformed into the dimensionless slip number as well as Herschel-Bulkley number. We solve the dimensionless equations and then focus on the effects of these parameters on the slip flow and heat transfer.

Findings

The results show that, for a given value of Herschel-Bulkley number, there is a finite critical value of slip number at which the pressure gradient reaches the lowest value and both the dimensionless yield radius and slip velocity become 1. Meanwhile, the Nusselt number tends to be infinite at this critical value of slip number. For the case of slip, the Nusselt number also approaches infinity at a finite critical value of Herschel-Bulkley number. Furthermore, the dimensionless velocity as well as temperature of the yield pseudoplastic fluid with higher slip number is lower within a small radius but becomes higher near the wall. Meanwhile, from the velocity and temperature profiles, the effect of Herschel-Bulkley number on these two parameters of the Bingham fluid at the smaller radius is opposite.

Originality/value

These associated expressions can be generalized to the flow and heat transfer of a Herschel-Bulkley fluid under slip boundary condition. It can provide a reference for the engineering application relating to the heat transfer and flow of a Herschel-Bulkley fluid. Meanwhile, it also suggests some revelations for dealing with this similar problem.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 July 2016

Madhu Macha, Kishan Naikoti and Ali J Chamkha

The purpose of this paper is to analyze the mangnetohydrodynamic boundary layer flow of a viscous, incompressible and electrically conducting non-Newtonian nanofluid obeying…

Abstract

Purpose

The purpose of this paper is to analyze the mangnetohydrodynamic boundary layer flow of a viscous, incompressible and electrically conducting non-Newtonian nanofluid obeying power-law model over a non-linear stretching sheet under the influence of thermal radiation with heat source/sink.

Design/methodology/approach

The transverse magnetic field is applied normal to the sheet. The model used for the nanofluid incorporates the effects of Brownian motion with thermophoresis in the presence of thermal radiation. On this regard, thermophoresis effect on convective heat transfer on nanofluids are investigated simultaneously. The governing partial differential equations are reduced to ordinary differential equations by suitable similarity transformations which are solved numerically by variational finite element method.

Findings

The computations carried out for some values of the power-law index, magnetic parameter, radiation parameter, Brownian motion and thermophoresis. The effect of these parameters on the velocity, temperature and nanoparticle volume fraction distribution are presented graphically. The skin friction coefficient, Nusselt number and Sherwood number for various values of the flow parameters of the problem are also presented.

Originality/value

To the best of the authors’ knowledge, no investigations has been reported regarding the study of non-Newtonian nanofluids which obeying power-law model over a nonlinear stretching sheet. The principal aim of this paper is to study the boundary layer MHD flow of a non-Newtonian power-law model over a non-linear stretching sheet on a quotient viscous incompressible electrically conducting with a nanofluid.

Details

Engineering Computations, vol. 33 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 148