Search results

1 – 10 of 15
Article
Publication date: 22 June 2020

Naveed Imran, Maryiam Javed, Muhammad Sohail, S. Farooq and Mubashir Qayyum

Naturally, all the materials are not viscous (i.e. milk, mayonnaise, blood, vaccines, syrups, cosmetics, oil reservoirs, paints, etc.). Here present analysis focuses on the usage…

Abstract

Purpose

Naturally, all the materials are not viscous (i.e. milk, mayonnaise, blood, vaccines, syrups, cosmetics, oil reservoirs, paints, etc.). Here present analysis focuses on the usage of non-Newtonian fluid rheological properties enhancing, damping tools, protection apparatus individuals and in various distinct mechanical procedures. Industrial applications of non-Newtonian liquids include minimum friction, reduction in oil-pipeline friction, scale-up, flow tracers and in several others. The peristaltic mechanism is used as a non-Newtonian material carrier here. This mechanism occurs because of continuous symmetrical and asymmetrical propulsion of smooth channel walls. Peristalsis is a very significant mechanism for carrying drugs and other materials during sensitive diseases treatments.

Design/methodology/approach

Keeping in mind the considered problem assumptions (Rabinowitsch fluid model, thermal Grashof number, Prandtl number, density Grashof number, wall properties, etc.), it is found that the modeled equations are coupled and nonlinear. Thus here, analytical results are quite challenging to acquire and very limited to extremely venerated circumstances unsettled to their nonlinearity. Hence various developments found in computing proficiencies, numerical procedures that provides accurate, stable and satisfying solutions for non-Newtonian material flows exclusively in complex dimensions play a significant role. Here BVP4C numerical technique is developed to evaluate the nonlinear coupled system of equations with appropriate boundary constraints.

Findings

Due to convectively heated surface fluid between the walls having a small temperature. Sherwood and Nusselt numbers both deduce for fixed radiation values and different Rabinowitsch fluid quantity. Skin friction is maximum in the case of Newtonian, while minimum in case of dilatant model and pseudoplastic models. The influence of numerous parameters associated with flow problems such as thermal Grashof number, density Grashof number, Hartman number, Brownian motion, thermophoresis motion factor and slip parameters are also explored in detail and plotted for concentration profile, temperature distribution and velocity. From this analysis, it is concluded that velocity escalates for larger

Originality/value

The work reported in this manuscript has not been investigated so far by any researcher.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 September 2017

N.B. Naduvinamani, Siddharam Patil and S.S. Siddapur

Nowadays, the use of Newtonian fluid as a lubricant is diminishing day by day, and the use of non-Newtonian fluids has gained importance. This paper presents an analysis of the…

Abstract

Purpose

Nowadays, the use of Newtonian fluid as a lubricant is diminishing day by day, and the use of non-Newtonian fluids has gained importance. This paper presents an analysis of the static characteristics of Rayleigh step slider bearing lubricated with non-Newtonian Rabinowitsch fluid, which has not been studied so far. The purpose of this paper is to derive the modified Reynolds equation for Rabinowitsch fluids for two regions and to obtain the optimum bearing parameters for the Rayleigh step slider bearings.

Design/methodology/approach

The governing equations relevant to the problem under consideration are derived. The modified Reynolds equation is derived, and it is found to be highly non-linear and hence small perturbation method is adopted to find solution.

Findings

From this study it is found that there is an increase in the load-carrying capacity, pressure and frictional coefficients for dilatant fluids as compared to the corresponding Newtonian case. Further, for dilatant lubricants the maximum load-carrying capacity is attained for the slightly larger values of entry region length of Rayleigh step bearing as compared to Newtonian and pseudoplastic lubricants.

Originality/value

Rabinowitsch fluid is used for the study of lubrication characteristics of Rayleigh step bearings. The author believes that the paper presents these results for the first time.

Details

Industrial Lubrication and Tribology, vol. 69 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2019

Pentyala Srinivasa Rao and Amit Kumar Rahul

This paper aims to investigate the effect of surface roughness (radial and azimuthal) and viscosity variation on a squeeze film of a conical bearing with a non-Newtonian lubricant…

Abstract

Purpose

This paper aims to investigate the effect of surface roughness (radial and azimuthal) and viscosity variation on a squeeze film of a conical bearing with a non-Newtonian lubricant by using Rabinowitsch fluid model.

Design/methodology/approach

The main objective is to determine the stochastic nonlinear modified Reynolds equation for rough conical bearing. Later, first-order closed-form solutions are obtained using a small perturbation method and are numerically solved using the Gauss quadrature method.

Findings

The findings of this paper, numerical calculations, are analyzed for pressure, load carrying capacity and response time. The simulated results indicate that the influence of surface roughness increases the pressure, load carrying capacity and response time, whereas the viscosity variation factor decreases the pressure, load and response time.

Originality/value

According to both types of surface roughness with viscosity variation, the performance of a squeeze film rough conical bearing was improved by using Rabinowitsch fluid model. As it is inevitable to consider viscosity variation for bearing designer, it leads to a long life period of conical bearing.

Details

Industrial Lubrication and Tribology, vol. 71 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 August 2013

Jaw‐Ren Lin, Chi‐Ren Hung, Li‐Ming Chu, Wei‐Liang Liaw and Ping‐Hui Lee

In the present paper, the authors aim to analyze the non‐Newtonian effects of Rabinowitsch fluids on the squeeze film performances between wide parallel rectangular plates.

117

Abstract

Purpose

In the present paper, the authors aim to analyze the non‐Newtonian effects of Rabinowitsch fluids on the squeeze film performances between wide parallel rectangular plates.

Design/methodology/approach

Based on the cubic‐stress equation model, a nonlinear squeeze‐film Reynolds‐type equation has been derived. By using a small perturbation method, a closed‐form solution of the squeeze film characteristics is derived for the parallel plates considering the non‐Newtonian effects of cubic stresses.

Findings

Comparing with the Newtonian‐lubricant parallel plates, the effects of non‐Newtonian cubic‐stress flow rheology provide significant influences upon the squeeze film characteristics.

Originality/value

It is shown that the non‐Newtonian pseudoplastic behavior reduces the load capacity and the response time; however, the effects of non‐Newtonian dilatant lubricant provide an increase in the load‐carrying capacity and therefore lengthen the response time of parallel squeeze‐film plates.

Details

Industrial Lubrication and Tribology, vol. 65 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 April 2014

Cheng-Hsing Hsu, Jaw-Ren Lin, Lian-Jong Mou and Chia-Chuan Kuo

– The purpose of this paper is to present a theoretical study of non-Newtonian effects in conical squeeze-film plates that is based on the Rabinowitsch fluid model.

Abstract

Purpose

The purpose of this paper is to present a theoretical study of non-Newtonian effects in conical squeeze-film plates that is based on the Rabinowitsch fluid model.

Design/methodology/approach

A non-linear, modified Reynolds equation accounting for the non-Newtonian properties following the cubic stress law equation is derived. Through a small perturbation method, first-order closed-form solutions are obtained.

Findings

It is found that the non-Newtonian properties of dilatant fluids increase the load capacity and lengthen the response time as compared to the case using a Newtonian lubricant; however, the non-Newtonian behaviors of pseudoplastic lubricants result in reverse influences.

Originality/value

Numerical tables for squeeze-film loads of conical plates are also provided for engineering applications.

Details

Industrial Lubrication and Tribology, vol. 66 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 October 2021

Naveed Imran and Maryiam Javed

Particular attention is given to the viscous damping force parameter, stiffness parameter, rigidity parameter, and Brinkman number and plotted their graph for thermal…

Abstract

Purpose

Particular attention is given to the viscous damping force parameter, stiffness parameter, rigidity parameter, and Brinkman number and plotted their graph for thermal distribution, momentum profile and concentration profile.

Design/methodology/approach

In the field of engineering, biologically inspired propulsion systems are getting the utmost importance. Keeping in view their developmental progress, the present study was made. The theoretical analysis explores the effect of heat and mass transfer on non-Newtonian Sisko fluid with slip effects and transverse magnetic field in symmetric compliant channel. Using low Reynolds number, so that the authors neglect inertial forces and for keeping the pressure constant during the flow, channel height is used largely as compared to the ratio of wavelength. The governing equations of fluid flow problem are solved using the perturbation analysis.

Findings

Results are considered for thickening, thinning and viscous nature of fluid models. It is found that the velocity distribution profile is boosted for increasing values of the Sisko fluid parameter and porous effect, while thermal profile is reducing for Brinkman number (viscous dissipation effects) for all cases. Moreover, shear-thicken and shear-thinning behavior of non-Newtonian Sisko fluid is also explained through the graphs.

Originality/value

Hear-thicken and shear-thinning behavior of non-Newtonian Sisko fluid is also explained through the graphs.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 September 2023

Takia Ahmed J. Al-Griffi and Abdul-Sattar J. Ali Al-Saif

The purpose of this study is to analyze the two-dimensional blood flow in the artery slant from the axis at an angle with mild stenosis under the joint effects of the…

Abstract

Purpose

The purpose of this study is to analyze the two-dimensional blood flow in the artery slant from the axis at an angle with mild stenosis under the joint effects of the electro-osmotic, magnetic field, chemical reaction and porosity using a new analytical method. In addition, the mathematical model presented by the researchers Tripathi and Sharma (2018c) was successfully developed by adding the effect of electro-osmosis and studying the impact of the new addition in the developed model on blood flow.

Design/methodology/approach

A new analytical method was used to find the analytical approximate solutions of two-dimensional blood flow in artery slant from the axis at an angle with mild stenosis. This technique is based on integrating the Akbari-Ganji and the homotopy perturbation methods.

Findings

The results of axial velocity, concentration, temperature and the wall shear stress for blood flow were analyzed in the cases of the absence and presence of electro-osmosis. Furthermore, in these two states of electro-osmosis, a contour plot was created to show the difference in the profile of velocity to the flow of blood when the magnetic field was increased and the altitude of stenosis was increased. The results showed that the new technique is effective and has high accuracy to determine the analytical approximate solutions of two-dimensional blood flow in artery slant from the axis at an angle with mild stenosis. The validity, utility and necessity of the new method were illustrated from the graphs of the new solutions; in addition, there is an excellent agreement with the results of previous studies.

Originality/value

This paper focuses on developing the mathematical model which was presented by the researchers Tripathi and Sharma (2018c), by adding the effect of the electro-osmosis to it, which has been successfully developed. According to the authors’ modest information, the new system has not been studied before. This current problem is solved by using an innovative approach known as the Akbari-Ganji homotopy perturbation method (AGHPM) which has not been used before in two cases: the presence and absence of the effect of electro-osmosis. This new technique afford new with effective and has high accuracy results. Furthermore, the new study (i.e. adding effect of electro-osmosis) with the applications of (variable viscosity, magnetic field, chemical reaction and porosity) illustrated the importance of applying electro-osmosis and how doctors can benefit from it during surgeries through proper use.

Article
Publication date: 13 November 2017

Chandra B. Khatri and Satish C. Sharma

The aim of the present paper is to study the combined influence of textured surface and micropolar lubricant behaviour on the performance of two-lobe hole-entry hybrid journal…

Abstract

Purpose

The aim of the present paper is to study the combined influence of textured surface and micropolar lubricant behaviour on the performance of two-lobe hole-entry hybrid journal bearing system. The bearing performance parameters of the textured circular/two-lobe hole-entry hybrid journal bearing system have been computed against the constant vertical external load supported by the bearing.

Design/methodology/approach

In this work, Eringen’s micropolar fluid theory has been used to derive the governing Reynolds equation. The consequent solution of the governing Reynolds equation has been obtained by using finite element method (FEM) numerical technique.

Findings

The present study indicates that the use of the textured surface, two-lobe profile of bearing and micropolar lubricant, significantly enhances the bearing performance as compared to non-textured circular journal bearing.

Originality/value

The present study concerning the influence of surface texturing on the behaviour of the two-lobe hole-entry hybrid journal bearing lubricated with micropolar lubricant is original. The theoretically simulated results of the present study will be useful to design an efficient journal bearing system.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 October 2019

Manjunatha Gudekote, Rajashekhar Choudhari, Hanumesh Vaidya, Prasad K.V. and Viharika J.U.

The purpose of this paper is to emphasize the peristaltic mechanism of power-law fluid in an elastic porous tube under the influence of slip and convective conditions. The effects…

Abstract

Purpose

The purpose of this paper is to emphasize the peristaltic mechanism of power-law fluid in an elastic porous tube under the influence of slip and convective conditions. The effects of different waveforms on the peristaltic mechanism are taken into account.

Design/methodology/approach

The governing equations are rendered dimensionless using the suitable similarity transformations. The analytical solutions are obtained by using the long wavelength and small Reynold’s number approximations. The expressions for velocity, flow rate, temperature and streamlines are obtained and analyzed graphically. Furthermore, an application to flow through an artery is determined by using a tensile expression given by Rubinow and Keller.

Findings

The principal findings from the present model are as follows. The axial velocity increases with an expansion in the estimation of velocity slip parameter and fluid behavior index, and it diminishes for a larger value of the porous parameter. The magnitude of temperature diminishes with an expansion in the Biot number. The flux is maximum for trapezoidal wave and minimum for the triangular wave when compared with other considered waveforms. The flow rate in an elastic tube increases with an expansion in the porous parameter, and it diminishes with an increment in the slip parameter. The volume of tapered bolus enhances with increasing values of the porous parameter.

Originality/value

The current study finds the application in designing the heart-lung machine and dialysis machine. The investigation further gives a superior comprehension of the peristaltic system associated with the gastrointestinal tract and the stream of blood in small or microvessels.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 28 August 2019

Mushrek A. Mahdi and Ahmed Waleed Hussein

The purpose of this paper is to investigate the combined effect of wear and turbulence on the performance of a hydrodynamic journal bearing operating under Newtonian and couple…

Abstract

Purpose

The purpose of this paper is to investigate the combined effect of wear and turbulence on the performance of a hydrodynamic journal bearing operating under Newtonian and couple stress fluids (CSF).

Design/methodology/approach

The analysis consists of a modified Reynolds equation of incompressible thin viscous films, and the film thickness model taking into account the wear effect. The governing equation was solved numerically using the finite difference approach.

Findings

The effect of both the wear parameter and the local Reynolds number on the performance characteristics of bearing has been presented and discussed. The obtained results observed that the characteristics of the intact and worn bearing in turbulent and laminar have been enhanced due to the non-Newtonian fluid (CSF) effect. Also, the results display that bearing worn and the turbulent regime cannot be neglected in calculating the performance characteristics of the bearing lubricated with Newtonian and non-Newtonian fluids. The results achieved from this study, specify that the bearing characteristics are significantly affected by these effects.

Originality/value

The paper investigates the behavior of hydrodynamic bearings considering different aspects simultaneously is interesting, and the application meets the current needs of improvement in modeling hydrodynamic bearings under different conditions.

Details

International Journal of Structural Integrity, vol. 10 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 15