Search results

1 – 10 of 476
Article
Publication date: 17 February 2022

Manish Kumar Ghodki

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and…

Abstract

Purpose

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and develop a hardware prototype of master–slave electric motors based biomass conveyor system to use the motors under normal operating conditions without overheating.

Design/methodology/approach

The hardware prototype of the system used master–slave electric motors for embedded controller operated robotic arm to automatically replace conveyor motors by one another. A mixed signal based embedded controller (C8051F226DK), fully compliant with IEEE 1149.1 specifications, was used to operate the entire system. A precise temperature measurement of motor with the help of negative temperature coefficient sensor was possible due to the utilization of industry standard temperature controller (N76E003AT20). Also, a pulse width modulation based speed control was achieved for master–slave motors of biomass conveyor.

Findings

As compared to conventional energy based mains supply, the system is self-sufficient to extract more energy from solar supply with an energy increase of 11.38%. With respect to conventional energy based \ of 47.31%, solar energy based higher energy saving of 52.69% was reported. Also, the work achieved higher temperature reduction of 34.26% of the motor as compared to previous cooling options.

Originality/value

The proposed technique is free from air, liquid and phase-changing material based cooling materials. As a consequence, the work prevents the wastage of these materials and does not cause the risk of health hazards. Also, the motors are used with their original dimensions without facing any leakage problems.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Abstract

Details

The Social Construction of Adolescence in Contemporaneity
Type: Book
ISBN: 978-1-80117-449-7

Article
Publication date: 6 November 2023

Thiago Galdino Balista, Carlos Friedrich Loeffler, Luciano Lara and Webe João Mansur

This work compares the performance of the three boundary element techniques for solving Helmholtz problems: dual reciprocity, multiple reciprocity and direct interpolation. All…

Abstract

Purpose

This work compares the performance of the three boundary element techniques for solving Helmholtz problems: dual reciprocity, multiple reciprocity and direct interpolation. All techniques transform domain integrals into boundary integrals, despite using different principles to reach this purpose.

Design/methodology/approach

Comparisons here performed include the solution of eigenvalue and response by frequency scanning, analyzing many features that are not comprehensively discussed in the literature, as follows: the type of boundary conditions, suitable number of degrees of freedom, modal content, number of primitives in the multiple reciprocity method (MRM) and the requirement of internal interpolation points in techniques that use radial basis functions as dual reciprocity and direct interpolation.

Findings

Among the other aspects, this work can conclude that the solution of the eigenvalue and response problems confirmed the reasonable accuracy of the dual reciprocity boundary element method (DRBEM) only for the calculation of the first natural frequencies. Concerning the direct interpolation boundary element method (DIBEM), its interpolation characteristic allows more accessibility for solving more elaborate problems. Despite requiring a greater number of interpolating internal points, the DIBEM has presented higher-quality results for the eigenvalue and response problems. The MRM results were satisfactory in terms of accuracy just for the low range of frequencies; however, the neglected higher-order primitives impact the accuracy of the dynamic response as a whole.

Originality/value

There are safe alternatives for solving engineering stationary dynamic problems using the boundary element method (BEM), but there are no suitable comparisons between these different techniques. This paper presents the particularities and detailed comparisons approaching the accuracy of the three important BEM techniques, aiming at response and frequency evaluation, which are not found in the specialized literature.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 January 2024

Mauro Minervino and Renato Tognaccini

This study aims to propose an aerodynamic force decomposition which, for the first time, allows for thrust/drag bookkeeping in two-dimensional viscous and unsteady flows. Lamb…

Abstract

Purpose

This study aims to propose an aerodynamic force decomposition which, for the first time, allows for thrust/drag bookkeeping in two-dimensional viscous and unsteady flows. Lamb vector-based far-field methods are used at the scope, and the paper starts with extending recent steady compressible formulas to the unsteady regime.

Design/methodology/approach

Exact vortical force formulas are derived considering inertial or non-inertial frames, viscous or inviscid flows, fixed or moving bodies. Numerical applications to a NACA0012 airfoil oscillating in pure plunging motion are illustrated, considering subsonic and transonic flow regimes. The total force accuracy and sensitivity to the control volume size is first analysed, then the axial force is decomposed and results are compared to the inviscid force (thrust) and to the steady force (drag).

Findings

Two total axial force decompositions in thrust and drag contributions are proposed, providing satisfactory results. An additional force decomposition is also formulated, which is independent of the arbitrary pole appearing in vortical formulas. Numerical inaccuracies encountered in inertial reference frames are eliminated, and the extended formulation also allows obtaining an accurate force prediction in presence of shock waves.

Originality/value

No thrust/drag bookkeeping methodology was actually available for oscillating airfoils in viscous and compressible flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 12 January 2024

Iryna Reshetnikova, Katarzyna Sanak-Kosmowska and Jan W. Wiktor

The purpose of this paper was identification and empirical assessment of the differentiation of consumers' attitudes in Ukraine and Poland to Russian brands and other brands…

Abstract

Purpose

The purpose of this paper was identification and empirical assessment of the differentiation of consumers' attitudes in Ukraine and Poland to Russian brands and other brands offered on the Russian market after Russia’s aggression against Ukraine on February 24, 2022.

Design/methodology/approach

The main research methods include a systematic literature review and the authors' own surveys conducted in November 2022. The research sample comprised 950 consumers – 67% of them were Poles, 30% – Ukrainians and 3% from other countries.

Findings

A respondents' country (Poland and Ukraine) does not impact attitudes to brands offered on the Russian market after Russia's invasion of Ukraine on February 24, 2022. Moreover, it does not affect and differentiate emotional engagement in the conflict and assistance to war victims. Cluster analysis resulted in identifying two groups on the basis of consumers' declared emotional reactions to the war. The first group was smaller (N = 353, 37.2%), referred to as “indifferent consumers”, and was characterized by a greater inclination to purchase brands offered in Russia. The other cluster, referred to as “sensitive consumers” (N = 597, 62.8%), comprises those engaged in offering assistance to war victims, showing strong emotions in connection with the aggression and military activities and characterized by a clearly negative attitude to Russian and other offered brands and an inclination to boycott these brands.

Research limitations/implications

A short time horizon, the study confined to two countries, difficulties in reaching Ukrainian respondents due to power failures in Ukraine in the period of conducting the survey (November 2022), a non-representative research sample – overrepresentation of people aged 18–25 years.

Practical implications

The research study contributes to the knowledge about consumer brand attitudes and preferences under unique social, economic and market conditions. These conditions were created by Russia's invasion of Ukraine in 2022, as well as the international and global character of the war in Ukraine. The significant implications of the study refer to brand communication policies and companies' CSR-related declarations. A number of consumers' errors were recorded, resulting from wrong brand retrieval, which were rectified at a later stage as a result of international restrictions imposed on Russia, harsh media criticism and social international embargoes imposed on brands offered in Russia. The marketing communication of contemporary global brands should give consideration to the informative function of CSR activities, and the communication process should be continuous. Critical attitudes and an inclination to boycott brands point to the possible consequences faced by inconsistent and ethically doubtful brand policies. This implication is clearly confirmed by the results of the study.

Social implications

The authors also wish to highlight the implications for practice and society. As mentioned earlier, Polish consumers involved in providing aid to victims of the war also expressed their opposition to the war by boycotting Russian products and international brands remaining in Russia. Popularization of the research results obtained by the authors can be a form of sensitizing the public to the need for long-term relief, awakening global awareness of the essence and importance of sanctions imposed on Russia, as well as the possibility of expressing opposition through individual purchasing decisions and boycotting brands still present in Russia.

Originality/value

The study allowed for identifying consumers' differentiated brand attitudes in two countries: a country inflicted by war (Ukraine) and a front-line country, strongly supporting Ukraine (Poland). The research contributes to consumer behavior theories and studies of consumer attitudes and preferences from the perspective of international corporations' CSR activities under the unique conditions of war. Also, it contributes to the knowledge of the mechanism of forming attitudes to Russian and international brands offered in Russia among CEE consumers.

Details

Central European Management Journal, vol. 32 no. 1
Type: Research Article
ISSN: 2658-0845

Keywords

Article
Publication date: 18 April 2024

Stefano Costa, Eugenio Costamagna and Paolo Di Barba

A novel method for modelling permanent magnets is investigated based on numerical approximations with rational functions. This study aims to introduce the AAA algorithm and other…

Abstract

Purpose

A novel method for modelling permanent magnets is investigated based on numerical approximations with rational functions. This study aims to introduce the AAA algorithm and other recently developed, cutting-edge mathematical tools, which provide outstandingly fast and accurate numerical computation of potentials and vector fields.

Design/methodology/approach

First, the AAA algorithm is briefly introduced along with its main variants and other advanced mathematical tools involved in the modelling. Then, the analysis of a circular Halbach array with a one-pole pair is carried out by means of the AAA-least squares method, focusing on vector potential and flux density in the bore and validating results by means of classic finite element software. Finally, the investigation is completed by a finite difference analysis.

Findings

AAA methods for field analysis prove to be strikingly fast and accurate. Results are in excellent agreement with those provided by the finite element model, and the very good agreement with those from finite differences suggests future improvements. They are also easy programming; the MATLAB code is less than 200 lines. This indicates they can provide an effective tool for rapid analysis.

Research limitations/implications

AAA methods in magnetostatics are novel, but their extension to analogous physical problems seems straightforward. Being a meshless method, it is unlikely that local non-linearities can be considered. An aspect of particular interest, left for future research, is the capability of handling inhomogeneous domains, i.e. solving general interface problems.

Originality/value

The authors use cutting-edge mathematical tools for the modelling of complex physical objects in magnetostatics.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Abstract

Details

The Engaged Business School
Type: Book
ISBN: 978-1-80382-941-8

Article
Publication date: 3 July 2023

Mariusz Korkosz, Stanisław Noga and Tomasz Rogalski

The study aims to show the influence of selected mechanical parameters of the rotor on the maximum speed and parameters of the electric motor.

Abstract

Purpose

The study aims to show the influence of selected mechanical parameters of the rotor on the maximum speed and parameters of the electric motor.

Design/methodology/approach

A simplified mechanical analysis of the rotor of the electric motor was conducted, determining the safety factor of the motor. An analysis of the impact of key rotor parameters (significant from the mechanical strength perspective) on the electromagnetic parameters and the safety factor of the selected high-speed electric motor was carried out. The influence of changes in the rotor’s geometrical dimensions (centrifugal force) on the electromagnetic parameters of the electric motor was shown.

Findings

The study shows the impact of changes in selected rotor parameters on electromagnetic parameters and the safety factor of a high-speed electric motor (at its required operating point of 45,000 rpm). The dependence of the safety factor as a function of the maximum motor speed was determined for the proposed rotor modifications.

Practical implications

The proposed modifications can be used in larger drive systems. They have practically no impact on increasing the value of the motor’s moment of inertia (they do not degrade the dynamics of the motor’s operation).

Originality/value

It was proposed to use a new design coefficient which is in relation to the motor’s safety coefficient. It has been shown that a minimal modification of the motor rotor allows to increase its maximum speed by several dozen per cent (while maintaining the safety factor). It has also been shown that when operating at maximum speed within the safe range, the change in the geometrical dimensions of the rotor hardly influences the change in the value of the centrifugal force.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 November 2023

Cheng Peng, He Cheng, Tong Zhang, Jing Wu, Fandi Lin and Jinglong Chu

This paper aims to further develop stator permanent magnet (PM) type memory machines by providing generalized design guidelines for double-stator memory machines (DSMMs) with…

56

Abstract

Purpose

This paper aims to further develop stator permanent magnet (PM) type memory machines by providing generalized design guidelines for double-stator memory machines (DSMMs) with hybrid PMs. This paper discusses the design experience of DSMMs and presents a comparative study of radial magnetization (RM) and circumferential magnetization (CM) types.

Design/methodology/approach

It begins with an introduction to RM and CM operating principles and magnetization mechanisms. Then, a comparative study is conducted for one of the RM-DSMM rotor pole pairs, inner and outer stator clamping angles and low coercive force PMs thickness. Finally, the two machines’ finite element simulation performance is compared. The validity of the proposed machine structure is demonstrated.

Findings

In this paper, the double-stator structure is extended to parallel hybrid PM memory machines, and two novel DSMMs with RM and CM configurations are proposed. Two types of DSMMs have PMs and magnetizing windings on the inner stator and armature windings on the outer stator. The main difference between the two is the arrangement of PMs on the inner stator.

Originality/value

Conventional stator PM memory machines have geometrical space conflicts between the PM and armature windings. The proposed double-stator structure can alleviate these conflicts and increase the torque density accordingly. In addition, this paper contributes to comparing the arrangement of hybrid PMs for DSMMs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 25 April 2024

Mohammed Messadi, Larbi Hadjout and Noureddine Takorabet

This paper aims to develop a new 3D analytical model in cylindrical coordinates to study radial flux eddy current couplers (RFECC) while considering the magnetic edge and 3D…

Abstract

Purpose

This paper aims to develop a new 3D analytical model in cylindrical coordinates to study radial flux eddy current couplers (RFECC) while considering the magnetic edge and 3D curvature effects, and the field reaction due to the induced currents.

Design/methodology/approach

The analytical model is developed by combining two formulations. A magnetic scalar potential formulation in the air and the magnets regions and a current density formulation in the conductive region. The magnetic field and eddy currents expressions are obtained by solving the 3D Maxwell equations in 3D cylindrical coordinates with the variable separation method. The torque expression is derived from the field solution using the Maxwell stress tensor. In addition to 3D magnetic edge effects, the proposed model takes into account the reaction field effect due to the induced currents in the conducting part. To show the accuracy of the developed 3D analytical model, its results are compared to those from the 3D finite element simulation.

Findings

The obtained results prove the accuracy of the new developed 3D analytical model. The comparison of the 3D analytical model with the 2D simulation proves the strong magnetic edge effects impact (in the axial direction) in these devices which must be considered in the modelling. The new analytical model allows the magnetic edge effects consideration without any correction factor and also presents a good compromise between precision and computation time.

Practical implications

The proposed 3D analytical model presents a considerably reduced computation time compared to 3D finite element simulation which makes it efficient as an accurate design and optimization tool for radial flux eddy current devices.

Originality/value

A new analytical model in 3D cylindrical coordinates has been developed to find the electromagnetic torque in radial flux eddy current couplers. This model considers the magnetic edge effects, the 3D curvature effects and the field reaction (without correction factors) while improving the computation time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 476