Search results

1 – 10 of 123
Open Access
Article
Publication date: 9 July 2024

Martina Glogar and Sanja Ercegovic Razic

In the field of research on the application of digital printing to textile materials, there are still many research issues that arise from the very demanding interaction of…

Abstract

Purpose

In the field of research on the application of digital printing to textile materials, there are still many research issues that arise from the very demanding interaction of digital printing technology and the complex, heterogeneous surface system of textile materials. This is precisely why the area of pre-treatment of textile materials is in need of research, and the purpose of this research was to establish the level of influence of physical and chemical activation of the textile surface with plasma and the possibility of improving the quality of the print and colour reproduction.

Design/methodology/approach

The paper deals with the possibility of applying argon and oxygen cold low-pressure plasma in the processing of cellulose knitted fabrics, with the aim of improving the quality of the print and colour reproduction in digital pigment inkjet printing. The selected raw material samples were 100% raw cotton and lyocell. After plasma treatment, the samples were printed by digital ink jet printing with water-based pigment printing ink. An analysis of the micromorphological structure of untreated and plasma-treated samples before and after printing was carried out, and a comparative analysis of the colour of the printed elements was carried out depending on the pre-treatment.

Findings

The conducted research showed a positive influence of plasma pre-treatment on the coverage of the fibre surface with pigments, the uniformity of pigment distribution along the fibre surface and the uniformity of the distribution of the polymeric binder layer. This has a positive effect on colour reproduction. Also, certain improvements in colourfastness to washing were obtained.

Research limitations/implications

Considering the complexity of the topic, although exhaustive, this research is not sufficient in itself, but opens up new questions and gives ideas for further research that must be carried out in this area.

Practical implications

Also, this kind of research contributes to the possibility of adopting the idea of industrial plasma transformation, as an ecologically sustainable functionalisation of textiles, which has not yet been established.

Originality/value

This research is certainly a contribution to the establishment of acceptable textile pre-treatment methods in the field of digital printing, as one of the key quality factors in digital textile printing (DTP). Considering the still large number of obstacles and unanswered questions encountered in the field of digital printing on textiles, this kind of research is a strong contribution to the understanding of the fundamental mechanisms of the complex interaction between printing ink and textile.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 2 February 2023

Padma S. Vankar and Archana Gangwar

The purpose of this study is to check the effectivity of plasma in the natural dyeing of polyester fabric using four natural dyes – Turkey red, Lac, Turmeric and Catechu using…

Abstract

Purpose

The purpose of this study is to check the effectivity of plasma in the natural dyeing of polyester fabric using four natural dyes – Turkey red, Lac, Turmeric and Catechu using plasma and alum mordant. The surface modification on the polyester fabric by plasma along with the use of benign mordant alum is studied. The enhancement of dyeability in polyester fabric with natural dyes is the main focus. Due to surface modification, the wettability increases, which leads to better dye uptake. Better dye uptake and better dye adherence are the main objectives.

Design/methodology/approach

Plasma-mediated natural dyeing is the main design of this research work. The effect of plasma treatment on surface modification of synthetic fabric polyester and its subsequent effects on their dyeing with different natural dyes, namely, Turkey red, Lac, Turmeric and Catechu are studied. The dyeability was further enhanced by the use of alum as mordant. The main focus is on the betterment of natural dyeing of polyester fabric using sustainable natural dyes resources for dyeing and to reduce wastewater contamination from the usage of toxic additive chemicals for cleaner production.

Findings

Plasma-mediated and alum-mordanted dyeing method facilitated very good dyeability of all the four natural dyes, namely, Turkey red, Lac, Turmeric and Catechu. Color strength (K/S) values and fastness properties of plasma-treated samples were far better than untreated samples. The synergistic effect of plasma and alum mordanting has made natural dyeing of polyester very easy with very good fastness results. Natural dyeing of polyester after 2 min of plasma treatment showed excellent and desirable results. The process is also easy to be adapted by industries.

Research limitations/implications

As polyester is hydrophobic, natural dyeing of polyester fabric is not very easy, but with plasma-mediated natural dyeing, it becomes a very facile dyeing method; thus, there are no limitations. Use of plasma has reduced the need for any chemical additives which are usually added during the dyeing process.

Practical implications

This process of natural dyeing of polyester fabric can be scaled up to industrial dyeing with natural dyes. Plasma pretreatment of the fabric followed by premordanting with alum has facilitated the natural dyeing well.

Social implications

Use of plasma in place of chemical modifiers can be a green and environmentally friendly approach for sustainable coloration of polyester fabric, providing a clean wet processing for textiles dyeing.

Originality/value

The synergistic effect of plasma-mediated and alum-mordanted natural dyeing of polyester has not been attempted by any researcher. To the best of the authors’ knowledge, this is for the first time that pretreatment with atmospheric plasma followed by alum mordanting of polyester fabric has shown very good dye uptake and fastness properties as the dye molecules could penetrate well after 2 min of the plasma treatment.

Details

Pigment & Resin Technology, vol. 53 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 December 2022

Khaled Mostafa, Heba Ameen and Ahmed Medhat

The purpose of this paper is to generate nitrogen-containing groups in the cotton fabric surface via low-temperature nitrogen plasma as an eco-friendly physical/zero-effluent…

Abstract

Purpose

The purpose of this paper is to generate nitrogen-containing groups in the cotton fabric surface via low-temperature nitrogen plasma as an eco-friendly physical/zero-effluent process. This was done for rendering cotton dye-able with Acid Blue 284, which in fact does not have any direct affinity to fix on it.

Design/methodology/approach

Dyeing characteristics of the samples such as color strength (K/S), fastness properties to light, rubbing and perspiration and durability, as well as tensile strength, elongation at break, whiteness, weight loss and wettability in addition to zeta potential of the dyed samples, were determined and compared with untreated fabric. Confirmation and characterization of the plasma-treated samples via chemical modifications and zeta potential was also studied using Fourier transform infrared spectroscopy (FTIR) and Malvern Zetasizer instrumental analysis.

Findings

The obtained results of the plasma-treated fabric reflect the following findings: FTIR results indicate the formation of nitrogen-containing groups on cotton fabrics; notable enhancement in the fabric wettability, zeta potential to more positive values and improvement in the dyeability and overall fastness properties of treated cotton fabrics in comparison with untreated fabric; the tensile strength, elongation at break, whiteness and weight % of the plasma treated fabrics are lower than that untreated one; and the durability of the plasma treated fabric decreased with increasing the number of washing cycles.

Originality/value

The novelty addressed here is rendering cotton fabrics dye-able with acid dye via the creation of new cationic nitrogen-containing groups on their surface via nitrogen plasma treatment as an eco-friendly and efficient tool with a physical/zero-effluent process.

Details

Pigment & Resin Technology, vol. 53 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 August 2024

Juanyan Miao, Yiwen Li, Siyu Zhang, Honglei Zhao, Wenfeng Zou, Chenhe Chang and Yunlong Chang

The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for…

Abstract

Purpose

The purpose of this study is to optimize and improve conventional welding using EMF assisted technology. Current industrial production has put forward higher requirements for welding technology, so the optimization and improvement of traditional welding methods become urgent needs.

Design/methodology/approach

External magnetic field assisted welding is an emerging technology in recent years, acting in a non-contact manner on the welding. The action of electromagnetic forces on the arc plasma leads to significant changes in the arc behavior, which affects the droplet transfer and molten pool formation and ultimately improve the weld seam formation and joint quality.

Findings

In this paper, different types of external magnetic fields are analyzed and summarized, which mainly include external transverse magnetic field, external longitudinal magnetic field and external cusp magnetic field. The research progress of welding behavior under the effect of external magnetic field is described, including the effect of external magnetic field on arc morphology, droplet transfer and weld seam formation law.

Originality/value

However, due to the extremely complex physical processes under the action of the external magnetic field, the mechanism of physical fields such as heat, force and electromagnetism in the welding has not been thoroughly analyzed, in-depth theoretical and numerical studies become urgent.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 July 2024

Majid Monajjemi and Fatemeh Mollaamin

Early prediction of any type of cancer is important for the treatment of this type of disease, therefore, our target to evaluate whether monitoring early changes in plasma human…

Abstract

Purpose

Early prediction of any type of cancer is important for the treatment of this type of disease, therefore, our target to evaluate whether monitoring early changes in plasma human epidermal growth factor receptor 2 (HER2) levels (using EIS), could help in the treatment of breast cancer or not? Human epidermal growth factor receptor 2 (HER2) overexpression is an important biomarker for treatment selection in earlier stages of cancers. The combined detection of the HER2 gene in plasma for blood cancer provides an important reference index for the prognosis of metastasis to other tissues. For this purpose, the authors fabricated and characterized a model wireless biosensor-based electrochemical impedance spectroscopy (EIS) for detecting HER2 plasma as therapeutics.

Design/methodology/approach

Most sensors generally are fabricated based on a connection between component of the sensors and the external circuits through wires. Although these types of sensors provide suitable sensitivities and also quick responses, the connection wires can be limited to the sensing ability in various devices approximately. Therefore, the authors designed a wireless sensor, which can provide the advantages of in vivo sensing and also long-distance sensing, quickly.

Findings

The biosensor structure was designed for detection of HER2, HER3 and HER-4 from lab-on-chip approach with six units of screen-printed electrode (SPE), which is built of an electrochemical device of gold/silver, silver/silver or carbon electrodes. The results exhibited that the biosensor is completely selective at low concentrations of the plasma and HER2 detection via the standard addition approach has a linearity plot, therefore, by using this type of biosensors HER2 in plasma can be detected.

Originality/value

This is then followed by detecting HER2 in real plasma using standard way which proved to have great linearity (R2 = 0.991) proving that this technique can be used to detect HER2 solution in real patients.

Article
Publication date: 21 December 2022

Liliya Frolova and Olga Sergeyeva

This paper aims to develop a simple and efficient plasma technology for the production of copper (I) oxide with the ability to control the morphology and size of Cu2O particles…

Abstract

Purpose

This paper aims to develop a simple and efficient plasma technology for the production of copper (I) oxide with the ability to control the morphology and size of Cu2O particles. To achieve this goal, the phase composition of the precipitate formed was estimated, the composition and size of the obtained particles were determined and Pourbaix diagrams were constructed.

Design/methodology/approach

An integrated approach combining thermodynamic calculations and experimental research methods is used. The constructed Pourbaix diagram makes it possible to suggest the phase composition of the sediment. The use of cyclic voltammetry made it possible to establish the mechanism of deposit formation on the cathode during the treatment of the solution with contact nonequilibrium low-temperature plasma. The resulting product was examined using X-ray phase analysis and scanning electron microscopy.

Findings

The article presents the results of theoretical and experimental studies on the synthesis of copper (II) oxide. The influence of the parameters of plasma-chemical synthesis on the shape and phase composition of the deposits formed has been studied.

Originality/value

A plasma-chemical technology for obtaining copper oxide in the form of single crystals of a regular faceted shape is proposed. The mechanism of formation of copper oxide has been established by cyclic voltammetry. The constructed Pourbaix diagrams show the area of existence of the product.

Details

Pigment & Resin Technology, vol. 53 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 August 2024

Rino Afrino, Almasdi Syahza, Suwondo Suwondo and Meyzi Heriyanto

A partnership model is necessary for palm oil plantations’ sustainability. The developed model does not identify the optimal technique for smallholder palm oil because it faces…

Abstract

Purpose

A partnership model is necessary for palm oil plantations’ sustainability. The developed model does not identify the optimal technique for smallholder palm oil because it faces complex challenges. This study aims to determine a partnership model for sustainable palm oil plantation business in Indonesia.

Design/methodology/approach

Qualitative research methods were used, and data analysis was performed using NVivo 12 Plus software, which helps improve the accuracy of qualitative studies and provides implications for evidence-based studies. All respondents, whether through surveys, interviews or focus group discussions, understood their contributions to this research and provided consent.

Findings

The results indicate that the core–plasma partnership pattern implemented by companies needs to be considered a relevant model for partnerships in the Indonesian palm oil industry. Social networks play a role in implementing this partnership pattern, which is influenced by the diversity of the actors involved. However, complexity arises from the dynamics of power and position among these actors, which demands increased interaction and mutual trust. Therefore, various dimensions must be considered, including plantation management, product marketing, cultivation techniques and sustainable development.

Research limitations/implications

The research results have limitations, particularly regarding access to information for company policymakers, because there remains complexity related to the position and dominance of power between actors, which influences the achievement of common goals. A more complex analysis is needed to produce complete research. Further studies are required to provide a more comprehensive explanation of the humanist approach in the context of palm plantations.

Originality/value

This study provides an important theoretical implementation: a more humane approach through a partnership model that adds value and is based on aspects of morality in implementing partnerships in the palm oil plantation sector. It also provides new and substantial insights regarding practical implementation for policymakers and practitioners who want to improve partnership practices in sustainable palm oil businesses by implementing value-added and morality-based partnership models in Indonesia as well as other developing countries.

Details

Journal of Science and Technology Policy Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 13 September 2024

Jian Hou, Chenyang Liu, Han Wang, Zilin Li, Guosheng Huang, Li Ma and Bo Jiang Ma

This paper aims to control the deformation of a thin wall CrZrCu cylinder components (wall thickness 5 mm, diameter 400 mm) during thermal spray alumina-titania (AT13) coating by…

Abstract

Purpose

This paper aims to control the deformation of a thin wall CrZrCu cylinder components (wall thickness 5 mm, diameter 400 mm) during thermal spray alumina-titania (AT13) coating by adjusting the spray parameters without deteriorating its quality evidently.

Design/methodology/approach

The deformation was controlled by lowering the temperature of the component in the way of adjusting the spray parameters. The main parameters adjust included extending the spraying distance, from normally 120 mm to 140 mm, decreasing plasma power from 50to 42 kW. An alumina-titanium (AT13) ceramic coating was chosen for protecting the substrate from corrosion. Microscopic morphology and phase analysis, insulation resistance testing, neutral salt test and electrochemical method were used to analyze the anti-corrosion and insulation performances of the coating.

Findings

The results indicate that, after adjusting the spraying parameters, the coating has a relatively high porosity, with an average value of 8.96 ± 0.77%. The bonding strength of the coating is relatively low, with an average value of 17.69 ± 0.85 MPa. However, after sealing, the polarization resistance of the coating in seawater can be maintained above 6.25 × 106 Ω.cm2 for an extended period. The coating has a high resistance (=1.1 M Ω), and there is no apparent galvanic corrosion when contacted with TC4 alloy. Additionally, analysis of corrosion products on the sample surface reveals that the samples with sprayed alumina-titanium ceramic show no copper corrosion products on the surface, and the coating remains intact, effectively isolating the corrosive medium.

Originality/value

By adjusting the spraying parameters, the deformation of the cylinder thin-walled component can be effectively controlled, making the φ 400 × 392 mm (thickness 5 mm) CrZrCu cylinder com-ponent with a maximum diameter deformation of only 0.14 mm. The satisfactory corrosion performances can be achieved under adjusting spraying parameters, which can guarantee the application of ceramic coating for weapon launching system of naval ships.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 May 2024

Chong Zhang, Jiayi Xiang and Qifan Wen

Due to the harsh underground environment in coal mining, the surface of hydraulic support columns corrodes severely, resulting in significant economic losses. Therefore, a highly…

35

Abstract

Purpose

Due to the harsh underground environment in coal mining, the surface of hydraulic support columns corrodes severely, resulting in significant economic losses. Therefore, a highly corrosion-resistant coatings is needed to extend the service life of the columns.

Design/methodology/approach

This study aims to compare the corrosion resistance of ST-Cr3C2-NiCr (sealed treatment Cr3C2-NiCr) coatings with industrially applied chromium plating. The corrosion failure mechanism of the coatings was investigated.

Findings

The results demonstrated that the ST-Cr3C2-NiCr coatings exhibited excellent corrosion resistance. After sealing treatment, the corrosion potential of Cr3C2-NiCr coatings was −0.215 V, and the corrosion current density of Cr3C2-NiCr coatings was lower than that of the plated parts.

Practical implications

ST-Cr3C2-NiCr coatings prepared by supersonic atmospheric plasma spraying could provide excellent corrosion resistance in the coal industry.

Originality/value

The low porosity and the presence of the NiCr phase were crucial factors contributing to the preferable corrosion resistance exhibited by the ST-Cr3C2-NiCr coatings. The corrosive process of the coatings involved layer-by-layer delamination of surface oxide film, sub-surface pitting, formation and degradation of sub-surface passive film, as well as severe block-like delamination.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 September 2024

Ahmed E. Abouelregal, Marin Marin, S.S. Saskar and Abdelaziz Foul

Understanding the mechanical and thermal behavior of materials is the goal of the branch of study known as fractional thermoelasticity, which blends fractional calculus with…

Abstract

Purpose

Understanding the mechanical and thermal behavior of materials is the goal of the branch of study known as fractional thermoelasticity, which blends fractional calculus with thermoelasticity. It accounts for the fact that heat transfer and deformation are non-local processes that depend on long-term memory. The sphere is free of external stresses and rotates around one of its radial axes at a constant rate. The coupled system equations are solved using the Laplace transform. The outcomes showed that the viscoelastic deformation and thermal stresses increased with the value of the fractional order coefficients.

Design/methodology/approach

The results obtained are considered good because they indicate that the approach or model under examination shows robust performance and produces accurate or reliable results that are consistent with the corresponding literature.

Findings

This study introduces a proposed viscoelastic photoelastic heat transfer model based on the Moore-Gibson-Thompson framework, accompanied by the incorporation of a new fractional derivative operator. In deriving this model, the recently proposed Caputo proportional fractional derivative was considered. This work also sheds light on how thermoelastic materials transfer light energy and how plasmas interact with viscoelasticity. The derived model was used to consider the behavior of a solid semiconductor sphere immersed in a magnetic field and subjected to a sudden change in temperature.

Originality/value

This study introduces a proposed viscoelastic photoelastic heat transfer model based on the Moore-Gibson-Thompson framework, accompanied by the incorporation of a new fractional derivative operator. In deriving this model, the recently proposed Caputo proportional fractional derivative was considered. This work also sheds light on how thermoelastic materials transfer light energy and how plasmas interact with viscoelasticity. The derived model was used to consider the behavior of a solid semiconductor sphere immersed in a magnetic field and subjected to a sudden change in temperature.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 123