Search results

1 – 10 of 199
Article
Publication date: 8 April 2016

Tarek Bentahar, Djamel Benatia and Mohamed Boulila

In this paper, a new efficient method to de-noise the interferometric Synthetic Aperture Radar interferogram, also called wrapped phase image, is proposed with the aim to reduce…

67

Abstract

Purpose

In this paper, a new efficient method to de-noise the interferometric Synthetic Aperture Radar interferogram, also called wrapped phase image, is proposed with the aim to reduce the residue number and make the phase unwrapping process easy.

Design/methodology/approach

This method is based on two statistics functions, the former is the phase derivative variance (PDV) defined as a quality map to select the badness areas, the second one is the phase derivative variance (PAD) for a local 3 × 3 pixels filtering which allows to assign an estimated phase for each bad area selected by PDV function. Our filter was tested with a simulated interferograms and compared to other most used filters.

Findings

With this proposed method, the residues in the interferogram are minimized better than using a conventional filters, and the phase unwrapping process gives a better estimation.

Originality/value

Combining two statistical functions (PDV and PAD) is efficient in terms of minimizing the noise in the interferogram; this is very helpful to minimize the processing time of the InSAR image particularly the phase unwrapping treatment and have a good quality of the image.

Details

World Journal of Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 November 2021

Terry Yuan-Fang Chen, Yu-Lung Lo, Ze-Hong Lin and Jui-Yu Lin

The purpose of this study was expected to simultaneously monitor the surface roughness of each solidified layer, the surface roughness of the metal powder, the outline of the…

Abstract

Purpose

The purpose of this study was expected to simultaneously monitor the surface roughness of each solidified layer, the surface roughness of the metal powder, the outline of the solidified layer, and the height difference between the solidified layer and the metal powder.

Design/methodology/approach

In the proposed approach, color images with red, green and blue fringes are used to measure the shape of the built object using a three-step phase-shift algorithm and phase-unwrapping method. In addition, the surface roughness is extracted from the speckle information in the captured image using a predetermined autocorrelation function.

Findings

The feasibility and accuracy of the proposed system were validated by comparing it with a commercial system for an identical set of samples fabricated by a selective laser melting process. The maximum and minimum errors between the two systems are approximately 24% and 0.8%, respectively.

Originality/value

In the additive manufacturing field, the authors are the first to use fringe detection technology to simultaneously measure the profile of the printed layer and its surface roughness.

Details

Rapid Prototyping Journal, vol. 28 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 February 1992

T.S. Gross, D.W. Watt, R.S. Raber, J.A. Perault and Y. Zhang

The failure of copper‐plated holes in dielectric laminates during thermal cycling is a serious problem for the electronics industry. The large difference in out‐of‐plane thermal…

Abstract

The failure of copper‐plated holes in dielectric laminates during thermal cycling is a serious problem for the electronics industry. The large difference in out‐of‐plane thermal expansion between the dielectric laminate and the copper plating can cause the copper plating to deform and fail as the board is thermally cycled. The purpose of this study was to demonstrate the feasibility of using electro‐optic holographic interferometry (EOHI) to measure deformation around plated holes and to evaluate methods for estimating the stress in the barrel plating. It was demonstrated that EOHI was more than adequate to resolve the out‐of‐plane thermally induced displacement field around an array of plated‐through holes. The displacement sensitivity was better than ±10 nm with high spatial resolution (92 ?m horizontally and 75 ?m vertically).The expansion was reasonably linear from 30°C to 120°C. The deformation around the individual holes was not axisymmetric. It is suggested that the method for estimating barrel stresses may be too sensitive to thickness and architecture variations in the pad for reliable stress estimates. An alternative scheme for estimation of barrel stresses based on thermal strain energy evaluation is described.

Details

Circuit World, vol. 18 no. 3
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 1 August 2004

C.Y. Xiong, J. Zhang, M. Li, J. Fang and S. Yi

In this paper, two transform methods, the Fourier transform (FT) and the wavelet transform (WT) methods, are utilized to process moiré fringes for the strain analysis of…

Abstract

In this paper, two transform methods, the Fourier transform (FT) and the wavelet transform (WT) methods, are utilized to process moiré fringes for the strain analysis of electronic packaging. With the introduction of fringe carriers, those transform techniques need only one fringe pattern for each deformation state. The strain modulation to the carrier frequency can be subtracted by filtering as the pattern is transformed into spectrum domain by the fast‐FT processing, and the deformation field can thus be restored by the inverse FT transform after spectral shifting. The WT method expands the pattern information involved in the fringe carrier in both spatial domain and spectral domain to analyze the deformation distribution in this combined space. By changing the transform scales in the processing, the wavelet transform offers multi‐resolution analysis for the deformation field with high gradients.

Details

Microelectronics International, vol. 21 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 13 September 2011

Kin Yen and Mani Ratnam

Researchers in the past have used Fourier transformation method to determine the in‐plane displacement components from moiré fringes generated by a pair of overlapping circular…

Abstract

Purpose

Researchers in the past have used Fourier transformation method to determine the in‐plane displacement components from moiré fringes generated by a pair of overlapping circular gratings. In this approach it is necessary to assume that the transmittance is sinusoidal. The purpose of this paper is to propose a graphical method for determining the 2D displacement components from the moiré patterns more easily instead of the complex Fourier transformation method.

Design/methodology/approach

The moiré patterns were spatially transformed from Cartesian‐to‐polar coordinate system. The morphological grayscale dilation operation was used to eliminate the residual gratings in the transformed pattern while preserving the moiré fringes. The center line of the moiré fringe was fitted with a sine curve and the in‐plane displacement values were determined directly from the peak‐to‐valley height and the position of the peak in the fitted curve.

Findings

Experimental results showed that the proposed moiré pattern analysis method is able to give in‐plane displacement accuracies of 0.002 mm in the x‐direction and 0.01 in the y‐direction without the need for complex computation.

Research limitations/implications

Resolution of the proposed method is limited only by the resolution of the imaging system.

Practical implications

The proposed graphical method for determining 2D displacement components from the moiré patterns can be applied to low‐frequency circular gratings whose transmittance is not sinusoidal.

Originality/value

The graphical analysis method is novel and allows the displacements components to be determined more easily.

Article
Publication date: 14 October 2021

Daniele Cinque, Jose Viriato Araujo dos Santos, Stefano Gabriele, Sonia Marfia and Hernâni Lopes

The purpose of this paper is to present a study on the application of four damage factors to several single and multiple damage scenarios of aluminium beams. Each one of these…

Abstract

Purpose

The purpose of this paper is to present a study on the application of four damage factors to several single and multiple damage scenarios of aluminium beams. Each one of these damage factors is defined by the information given by modal curvatures of the beams.

Design/methodology/approach

The methodology consisted of a first experimental stage in which the modal rotations were measured with shearography and a subsequent numerical analysis in order to obtain the modal curvatures. To this end, three finite difference formulae were applied. The modal curvatures were then used to calculate the damage factors.

Findings

It was found that the profile of the damage factors varies according to the finite difference formula used. In view of the findings, the differences among the damage factors analysed are highlighted and some final recommendations to improve damage identifications via modal curvature-based are presented.

Originality/value

To the best of the authors’ knowledge, the application and comparison of several finite difference formulae and corresponding optimal sampling has not been carried out before. With the proposed approach, it is possible to identify multiple damages, which is still a great challenge. The post-processing of shearography measurements with a numerical method, which is inherently a multidisciplinary approach, is also a substantial improvement upon other type of approaches found in the literature.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 October 2018

Ke Kou, Tianhong Lian, Cuo Wang and Guanlei Zhang

As an emerging measurement technique with the merit of easy alignment and high sensitivity, laser self-mixing interferometry (SMI) has wide applications in the detection of…

Abstract

Purpose

As an emerging measurement technique with the merit of easy alignment and high sensitivity, laser self-mixing interferometry (SMI) has wide applications in the detection of physical quantities. Considering that the characteristics of lasers have a determining influence on sensors’ performance, the authors have established an open cavity solid-state laser (SSL) with more adjustment flexibility to act as a laser source.

Design/methodology/approach

The fundamental structure of a SSL has been presented with an Nd:YAG rod severing as an active material and a birefringent filter inserted in the resonator as a mode selecting element. The power stability has been tested by a power meter, while the mode pattern has been inspected with a scanning Fabry–Perot interferometer, and the linewidth has been observed through a wavelength meter. A loudspeaker driven by a function generator is located in the extracavity to introduce phase modulation for SMI signal observation.

Findings

The established Nd:YAG SSL operates in a single longitudinal mode with the power stability of 0.2 mW and the linewidth less than 10 MHz. The SMI phenomenon occurs in the SSL, and the SMI signal obtained shows a fine signal-to-noise ratio of about 30 dB.

Originality/value

To the authors knowledge, SMI sensors using SSLs, especially in open cavity type, have rarely been reported, and they can find significant applications in designing high performance SMI sensors and instruments.

Details

Sensor Review, vol. 39 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 21 September 2020

Sandhya Ramalingam, Umma Habiba Hyder Ali and Sharmeela Chenniappan

This paper aims to design a dual mode X-band substrate integrated waveguide (SIW) bandpass filter in the conventional SIW structure. A pair of back-to-back square and split ring…

Abstract

Purpose

This paper aims to design a dual mode X-band substrate integrated waveguide (SIW) bandpass filter in the conventional SIW structure. A pair of back-to-back square and split ring resonator is introduced in the single-layer SIW bandpass filter. The various coupling configurations of SIW bandpass filter using split square ring slot resonator is designed to obtain dual resonant mode in the passband. It is shown that the measured results agree with the simulated results to meet compact size, lower the transmission coefficient, better reflection coefficient, sharp sideband rejection and minimal group delay.

Design/methodology/approach

A spurious suppression of wideband response is suppressed using an open stub in the transmission line. The width and length of the stub are tuned to suppress the wideband spurs in the stopband. The measured 3 dB bandwidth is from 8.76 to 14.24 GHz with a fractional bandwidth of 48.04% at a center frequency of 11.63 GHz, 12.59 GHz. The structure is analyzed using the equivalent circuit model, and the simulated analysis is based on an advanced design system software.

Findings

This paper discusses the characteristics of resonator below the waveguide cut-off frequency with their working principles and applications. Considering the difficulties in combining the resonators with a metallic waveguide, a new guided wave structure – the SIW is designed, which is synthesized on a planar substrate with linear periodic arrays of metallized via based on the printed circuit board.

Originality/value

This study has investigated the wave propagation problem of the SIW loaded by square ring slot-loaded resonator. The electric dipole nature of the resonator has been used to achieve a forward passband in a waveguide environment. The proposed filters have numerous advantages such as high-quality factor, low insertion loss, easy to integrate with the other planar circuits and, most importantly, compact size.

Details

Circuit World, vol. 48 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 December 2000

D.F.L Jenkins, W.W. Clegg, L. He, J. Windmill, G. Tunstall, X. Liu, C. Chilumbu and A. Li

The areal (surface area density of bits) storage density of magnetic hard disks is continually increasing, with typical available commercial storage densities being around…

1549

Abstract

The areal (surface area density of bits) storage density of magnetic hard disks is continually increasing, with typical available commercial storage densities being around 10Gbits/in2. It is predicted that densities in excess of 40Gbits/in2 will be possible before the year 2003. A number of key issues arise from this development, such as the need to determine and control accurately the dynamic flying height (z‐axis) of the read‐write head, which is affected by the apparent distortion of the disk surface due to rotation‐induced disk resonance. As a result of the increasing storage density the positional control of the head in the plane of the disk (xy plane) also becomes more critical. This paper deals generally, but with a particular emphasis on optical and piezoelectric sensors used in our laboratory for characterisation of storage media and systems.

Details

Sensor Review, vol. 20 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 12 March 2021

Hamed Dabaghi, Saeid Saieda Ardakani and Seyed Mohammad Tabataba’i-Nasab

The purpose of this paper is to focus on the emerging phenomenon of medical tourism in the context of Iran from a customer experience management perspective and benchmark of their…

Abstract

Purpose

The purpose of this paper is to focus on the emerging phenomenon of medical tourism in the context of Iran from a customer experience management perspective and benchmark of their judgment including positive or negative, of the experience they have achieved of the Iranian health (medical) experience (CE) and suggest scenarios for the improvement of the Iranian customer experience management (CEM).

Design/methodology/approach

The research methodologies and research methods that are used in this descriptive-analytical research are based on an inspection of the remarkable literature related to medical tourism and customer experience management. The data gathering instrument is a researcher-made questionnaire based on the variables in the conceptual model extracted from the research literature. The study was conducted from May to August 2019. The population cohort of this study was the foreign patients calling selected Iranian hospitals and the sampling method was a purposive and snowball sample of prospective medical tourists. As the study was conducted throughout Iran, some important hospitals in Iran were selected by stratified sampling Yang et al. (2020b). The sample size and data saturation were 500 participants Lv and Song (2019). The collected data using the questionnaire were analyzed by SPSS software and statistical tests.

Findings

According to the results, the customer experience management statistical significance in the task aspect is (p = 0.0523), in the mechanical aspect is (p = 0.0563), in the human aspect is (p = 0.0544). The study showed positive customer experience among the patients who had been treated in the Iranian hospitals.

Originality/value

There is a lack of study that focuses on medical tourism and customer experience management in Iran. Therefore, based on the results of this study, the experience of medical tourists in Iran proved to be positive and satisfying. As little research has been conducted in the area of customer experience management (CEM) in Iranian medical tourism, future researchers can use these valuable results precisely and in more detail to benchmark more accurately the customer experience in all areas of medical and health tourism and other research areas in different aspects of CEM in Iran.

Details

Journal of Islamic Marketing, vol. 13 no. 1
Type: Research Article
ISSN: 1759-0833

Keywords

1 – 10 of 199