Search results

1 – 10 of 16
Article
Publication date: 21 September 2020

Sandhya Ramalingam, Umma Habiba Hyder Ali and Sharmeela Chenniappan

This paper aims to design a dual mode X-band substrate integrated waveguide (SIW) bandpass filter in the conventional SIW structure. A pair of back-to-back square and split ring…

Abstract

Purpose

This paper aims to design a dual mode X-band substrate integrated waveguide (SIW) bandpass filter in the conventional SIW structure. A pair of back-to-back square and split ring resonator is introduced in the single-layer SIW bandpass filter. The various coupling configurations of SIW bandpass filter using split square ring slot resonator is designed to obtain dual resonant mode in the passband. It is shown that the measured results agree with the simulated results to meet compact size, lower the transmission coefficient, better reflection coefficient, sharp sideband rejection and minimal group delay.

Design/methodology/approach

A spurious suppression of wideband response is suppressed using an open stub in the transmission line. The width and length of the stub are tuned to suppress the wideband spurs in the stopband. The measured 3 dB bandwidth is from 8.76 to 14.24 GHz with a fractional bandwidth of 48.04% at a center frequency of 11.63 GHz, 12.59 GHz. The structure is analyzed using the equivalent circuit model, and the simulated analysis is based on an advanced design system software.

Findings

This paper discusses the characteristics of resonator below the waveguide cut-off frequency with their working principles and applications. Considering the difficulties in combining the resonators with a metallic waveguide, a new guided wave structure – the SIW is designed, which is synthesized on a planar substrate with linear periodic arrays of metallized via based on the printed circuit board.

Originality/value

This study has investigated the wave propagation problem of the SIW loaded by square ring slot-loaded resonator. The electric dipole nature of the resonator has been used to achieve a forward passband in a waveguide environment. The proposed filters have numerous advantages such as high-quality factor, low insertion loss, easy to integrate with the other planar circuits and, most importantly, compact size.

Details

Circuit World, vol. 48 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 26 July 2021

Arun Kumar Gande, Souma Guha Mallick, Bijit Biswas, Sayan Chatterjee and Dipak Ranjan Poddar

This paper aims to present a compact, broadband substrate integrated waveguide (SIW) three-way power divider with improved isolation based on six-port SIW coupler.

Abstract

Purpose

This paper aims to present a compact, broadband substrate integrated waveguide (SIW) three-way power divider with improved isolation based on six-port SIW coupler.

Design/methodology/approach

The power coupling among the three output ports occurs due to short openings in the narrow walls of the central SIW channel. Performance improvement in the isolation and return loss among ports is achieved using matching posts placed at the input and output ends of the coupling region. This enhances the coupling between TE10 and TE30 modes. The input matching ports enhance the return loss, whereas the isolation is alleviated by both the input and output matching posts. The bandwidth enhancement is achieved by optimizing the outer SIW channel widths.

Findings

The measured fractional bandwidth of 27.3% with over 15 dB of isolation and return loss is achieved. The coupling length is 1.55 λg at the centre frequency. The power divider achieves better than 15 dB isolation between non-adjacent output ports. The measured reflection and isolation coefficients are in close agreement with simulated results over 8.2 to 10.8 GHz.

Practical implications

Isolation between the adjacent and non-adjacent ports is an important parameter as the reflections from these ports will interfere with signals from other ports reducing the fractional bandwidth of the power divider and affecting the overall performance of the transmitters and receivers.

Originality/value

The authors present the enhancement of isolation between the output non-adjacent ports by optimizing the SIW channel width and matching post in the coupling region to reduce the reflected signals from non-adjacent ports entering into other ports. To the author’s knowledge, this is the only SIW three-way power divider paper showing non-adjacent port isolation among six-port couplers based three-way power dividers.

Details

Circuit World, vol. 48 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 25 January 2021

Alpesh Vala, Amit V. Patel, Keyur Mahant, Jitendra Chaudhari and Hiren K. Mewada

The purpose of this paper is to design and develop half-mode substrate-integrated waveguide (HMSIW)- and quarter-mode substrate-integrated waveguide (QMSIW)-based antennas for…

Abstract

Purpose

The purpose of this paper is to design and develop half-mode substrate-integrated waveguide (HMSIW)- and quarter-mode substrate-integrated waveguide (QMSIW)-based antennas for wireless communication application. The developed antennas offer advantages in terms of compactness, high gain and better isolation between the ports.

Design/methodology/approach

Initially, the tri-band substrate-integrated waveguide-based antenna is designed using a slot on the ground plane. Then, the same structure has been bisected into two parts for the development of the HMSIW structure. Again the concept of the slot is used for the realization of a dual-band antenna. QMSIW-based structure is designed with further dividing HMSIW structure into two parts. Simulation has been carried out with the use of a high-frequency structure simulator (HFSS) software, which used a finite element-based solver for the full-wave analysis.

Findings

The proposed HMSIW-based dual-band antenna resonates at two different frequencies, namely, 5.81 GHz with 4.5 dBi gain and at 6.19 GHz with 6.8 dBi gain. Isolation between two ports is 20 dB. The overall dimensions of the proposed model are 0.39 λ × 0.39 λ. Similarly, QMSIW-based antenna is resonated at 5.66 GHz of the frequency with the 3 dBi gain. Frequency tuning is also carried out with the change in the slot dimension to use the proposed antenna in various C (4–8 GHz) band applications.

Originality/value

The proposed antennas can use C band wireless frequency application. The proposed structure provides better performance in terms of isolation between the ports, small size, high front-to-back ratio and higher gain. It is fabricated for the proof of concept with the RT Duroid 5880 substrate material having a 2.2 permittivity. Measured results show a similar kind of performance as a simulated one.

Article
Publication date: 14 April 2023

Atul Varshney and Vipul Sharma

This paper aims to present the design development and measurement of two aerodynamic slotted X-bands back-to-back planer substrate-integrated rectangular waveguide (SIRWG/SIW) to…

Abstract

Purpose

This paper aims to present the design development and measurement of two aerodynamic slotted X-bands back-to-back planer substrate-integrated rectangular waveguide (SIRWG/SIW) to Microstrip (MS) line transition for satellite and RADAR applications. It facilitates the realization of nonplanar (waveguide-based) circuits into planar form for easy integration with other planar (microstrip) devices, circuits and systems. This paper describes the design of a SIW to microstrip transition. The transition is broadband covering the frequency range of 8–12 GHz. The design and interconnection of microwave components like filters, power dividers, resonators, satellite dishes, sensors, transmitters and transponders are further aided by these transitions. A common planar interconnect is designed with better reflection coefficient/return loss (RL) (S11/S22 ≤ 10 dB), transmission coefficient/insertion loss (IL) (S12/S21: 0–3.0 dB) and ultra-wideband bandwidth on low profile FR-4 substrate for X-band and Ku-band functioning to interconnect modern era MIC/MMIC circuits, components and devices.

Design/methodology/approach

Two series of metal via (6 via/row) have been used so that all surface current and electric field vectors are confined within the metallic via-wall in SIW length. Introduced aerodynamic slots in tapered portions achieve excellent impedance matching and tapered junctions with SIW are mitered for fine tuning to achieve minimum reflections and improved transmissions at X-band center frequency.

Findings

Using this method, the measured IL and RLs are found in concord with simulated results in full X-band (8.22–12.4 GHz). RLC T-equivalent and p-equivalent electrical circuits of the proposed design are presented at the end.

Practical implications

The measurement of the prototype has been carried out by an available low-cost X-band microwave bench and with a Keysight E4416A power meter in the microwave laboratory.

Originality/value

The transition is fabricated on FR-4 substrate with compact size 14 mm × 21.35 mm × 1.6 mm and hence economical with IL lie within limits 0.6–1 dB and RL is lower than −10 dB in bandwidth 7.05–17.10 GHz. Because of such outstanding fractional bandwidth (FBW: 100.5%), the transition could also be useful for Ku-band with IL close to 1.6 dB.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 July 2020

Keyur Mahant, Hiren K. Mewada, Amit V. Patel, Alpesh Vala and Jitendra Chaudhari

This paper aims to present, design and implement a novel half-mode substrate integrated waveguide (HMSIW)-based narrow bandpass filter, which offers advantages like low insertion…

Abstract

Purpose

This paper aims to present, design and implement a novel half-mode substrate integrated waveguide (HMSIW)-based narrow bandpass filter, which offers advantages like low insertion loss, compact size and high selectivity. Proposed filter will be used in the K-band automotive radar application.

Design/methodology/approach

The filtering response in the proposed design is achieved by inserting inductive posts in the HMSIW cavity. Ansoft high frequency structure Simulator (HFSS) is used for the simulation of the proposed structure, which is a three-dimensional full-wave solver using the finite element method (FEM). The proposed filter is fabricated on the dielectric material RT duroid 5,880 with the dielectric constant ɛr = 2.2, dissipation factor t and = 4 × 10–4 and height h = 0.508 mm.

Findings

Frequency tuning is also carried out by changing the lateral distance between two inductive posts. Moreover, a comparison of the proposed structure with the previously published work is presented. Proposed method provides the unique advantages such as low insertion loss, high selectivity and compact in size.

Originality/value

Indigenous method has been used for the development of the filter. Proposed filter will be used in transmitter subsystem of the K-band radar system operating at the center frequency of 11.2 GHz. Measurement results are well-matched with the simulated one. Obtained measured result shows return loss of 20.39 dB and insertion loss of 1.59 dB with 3 dB fractional bandwidth (FBW) of 2.58% at the center frequency of 11.2 GHz.

Details

Circuit World, vol. 47 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 1 March 2013

Dong‐Hua Yang, Tsung‐Han Liu, Po‐Yu Ke, Wen‐Piao Lin and Hsien‐Chin Chiu

The purpose of this paper is to design and measure an H‐plane substrate integrated waveguide (SIW) 72 GHz backfired horn antenna chip. The SIW horn was fabricated on a standard…

Abstract

Purpose

The purpose of this paper is to design and measure an H‐plane substrate integrated waveguide (SIW) 72 GHz backfired horn antenna chip. The SIW horn was fabricated on a standard 0.5‐μm GaAs process with substrate thickness of 100 μm.

Design/methodology/approach

Planar SIW horn design method with standard GaAs circuit design rule was adopted. The input reflection coefficient and output antenna gain was simulated at the FEM‐based 3D full‐wave EM solver, Ansoft HFSS and measured at the Agilent E8361C Network Analyzer and Cascade 110 GHz probe station.

Findings

The measured input −6 dB bandwidth is about 0.9 GHz at a center frequency of 72.39 GHz. The maximum antenna power gain extracted from the path loss at 72.39 GHz is about −3.64 dBi.

Research limitations/implications

Thin substrate exhibits larger capacitance and energy stores rather than radiates. Flat cutting restricts the arc lens design and results in the radiation plane mismatches to the air. Simple taper transition design makes the input bandwidth much narrower. The problems can be further improved by selecting thicker substrate and the multi‐section input CPW GSG pads to microstrip transition.

Practical implications

Unlike the traditional anechoic chamber, the antenna measurement station is exposed to the open space and chip antenna was supported by the FR4 substrate and the metal probing station plate. A fully characterization of the antenna open space environment before the measurement is needed.

Originality/value

An H‐plane SIW 72 GHz horn antenna was designed and studied. The antenna was using the GaAs 0.5‐μm MMICs process design rule includes the SIW designed cylindrical metal bars all being restricted in standard rectangular shape. Compare to traditional bulky waveguide horn antenna, the antenna chip size is only 1.8×1.7 mm2. The on‐wafer measurement is conducted to measure the input return loss and the maximum antenna power gain of the on‐chip antenna. The designed on‐chip SIW horn antenna is useful for the integrated design of the E band GaAs MMICs single‐chip RF transceiver.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 32 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 21 December 2021

Yousra Ghazaoui, Mohammed EL Ghzaoui, Sudipta Das, BTP Madhav and Ali el Alami

This paper aims to present the design, fabrication and analysis of a wideband, enhanced gain 1 × 2 patch antenna array with a simple profile structure to meet the desired antenna…

Abstract

Purpose

This paper aims to present the design, fabrication and analysis of a wideband, enhanced gain 1 × 2 patch antenna array with a simple profile structure to meet the desired antenna traits, such as wide bandwidth, high gain and directional patterns expected for the upcoming fifth-generation (5G) wireless applications in the millimeter wave band. To enhance these parameters (bandwidth and gain), a new antenna geometry by using a T-junction power divider is presented.

Design/methodology/approach

The theory behind this paper is connected with advancements in the 5G communications related to antennas. The methodology used in this work is to design a high gain array antenna and to identify the best possible power divider to deliver the power in an optimized way. The design methodology adopts several steps like the selection of proper substrate material as per the design specification, size of the antenna as per the frequency of operation and application-specific environment condition. The simulation has been performed on the designed antenna in the electromagnetic simulation tool (high-frequency structure simulator [HFSS]), and optimization has been done with parametric analysis, and then the final array antenna model is proposed. The proposed array contains 2-patch elements excited by one port adapted to 50 Ω through a T-junction power divider. The 1 × 2 array configuration with the suggested geometry helps to improve the overall gain of the antenna, and the implementation of the T-junction power divider provides enhanced bandwidth. The proposed array designed using a 1.6 mm thick flame retardant substrate occupies a compact area of 14 × 12.14 mm2.

Findings

The prototype of the array antenna is fabricated and measured to validate the design concept. A good agreement has been reached between the measured and simulated antenna parameters. The measured results confirm its wideband and high gain characteristics, covering 24.77–28.80 GHz for S11= –10 dB with a peak gain of about 15.16 dB at 27.65 GHz.

Originality/value

The proposed antenna covers the bandwidth requirements of the 26 GHz n258 band (24.25–27.50 GHz) to be deployed in the UK and Europe. The suggested antenna structure also covers the federal communications commission (FCC)-regulated 28 GHz n261 band (27.5–28.35 GHz) to be deployed in America and Canada. The low profile, compact size, simple structure, wide bandwidth, high gain and desired directional radiation patterns confirm the applicability of the suggested array antenna for the upcoming 5 G wireless systems.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 28 December 2021

Karthie S., Zuvairiya Parveen J., Yogeshwari D. and Venkadeshwari E.

The purpose of this paper is to present the design of a compact microstrip bandpass filter (BPF) in dual-mode configuration loaded with cross-loop and square ring slots on a…

96

Abstract

Purpose

The purpose of this paper is to present the design of a compact microstrip bandpass filter (BPF) in dual-mode configuration loaded with cross-loop and square ring slots on a square patch resonator for C-band applications.

Design/methodology/approach

In the proposed design, the dual-mode response for the filter is realized with two transmission zeros (TZs) by the insertion of a perturbation element at the diagonal corner of the square patch resonator with orthogonal feed lines. Such TZs at the edges of the passband result in better selectivity for the proposed BPF. Moreover, the cross-loop and square ring slots are etched on a square patch resonator to obtain a miniaturized BPF.

Findings

The proposed dual-mode microstrip filter fabricated in RT/duroid 6010 substrate using PCB technology has a measured minimum insertion loss of 1.8 dB and return loss better than 24.5 dB with a fractional bandwidth (FBW) of 6.9%. A compact size of 7.35 × 7.35 mm2 is achieved for the slotted patch resonator-based dual-mode BPF at the center frequency of 4.76 GHz. As compared with the conventional square patch resonator, a size reduction of 61% is achieved with the proposed slotted design. The feasibility of the filter design is confirmed by the good agreement between the measured and simulated responses. The performance of the proposed filter structure is compared with other dual-mode filter works.

Originality/value

In the proposed work, a compact dual-mode BPF is reported with slotted structures. The conventional square patch resonator is deployed with cross-loop and square ring slots to design a dual-mode filter with a square perturbation element at its diagonal corner. The proposed filter exhibits compact size and favorable performance compared to other dual-mode filter works reported in literature. The aforementioned design of the dual-mode BPF at 4.76 GHz is suitable for applications in the lower part of the C-band.

Details

Microelectronics International, vol. 39 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 27 September 2021

Sagar Juneja, Rajendra Pratap and Rajnish Sharma

Propagation characteristics of millimeter wave (mmW) frequencies that are being explored for implementing 5G network are quite different from sub 3GHz frequencies in which 4G…

Abstract

Purpose

Propagation characteristics of millimeter wave (mmW) frequencies that are being explored for implementing 5G network are quite different from sub 3GHz frequencies in which 4G network is operating, and hence antenna design for mmW 5G network is going to be significantly different. The purpose of this paper is to bring forth the unique challenges and opportunities of planar antenna design for mmW 5G network.

Design/methodology/approach

A lot of notable contemporary work has been investigated for this study and reported in this paper. A comparison of 4G and 5G technologies has been carried out to understand the difference between the air interface of two technologies that governs the antenna design. Important research gaps found after collating the work already done in the field have been bullet pointed for the use by many researchers working in this direction.

Findings

Several antenna design considerations have been laid out by the authors of this work, and it has been claimed that mmW 5G antenna design must satisfy these design considerations. In addition, prominent research gaps have been identified and thoroughly discussed.

Originality/value

As research in the field of mmW antenna design for 5G applications is still evolving, a lot of work is currently being done in this area. This study can prove to be important in understanding different challenges, opportunities and current state-of-art in the field of mmW planar antenna design for 5G cellular communication.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 24 December 2021

Reza Kazemi, Mohsen Fallah, Bijan Abbasi and Seyyed Hossein MohseniArmaki

The purpose of this study is to achieve the low-cost, light-weight and compact antenna array with wide bandwidth and low side lobe levels for synthetic aperture radar (SAR…

Abstract

Purpose

The purpose of this study is to achieve the low-cost, light-weight and compact antenna array with wide bandwidth and low side lobe levels for synthetic aperture radar (SAR) applications in Ku frequency band.

Design/methodology/approach

A compact design of a rectangular microstrip patch antenna array using multilayered dielectric structure is presented in Ku-band for advanced broadband SAR systems. In this design, stepped pins are used to connect the microstrip feed lines to the radiating patches.

Findings

The simulation and fabrication results of the multilayered antenna and a 1×16-element linear array of the antenna with Taylor amplitude distribution in the feeding network are presented. The antenna element has a 10-dB impedance bandwidth of more than 26%, and the linear array shows reduction in bandwidth percentage (about 15.4%). Thanks to Taylor amplitude tapering, the side lobe level (SLL) of the array is lower than −24 dB. The maximum measured gains of the antenna element and the linear array are 7 and 19.2 dBi at the center frequency, respectively.

Originality/value

In the communication systems, a high gain narrow beamwidth radiation pattern achieved by an array of multiple antenna elements with optimized spacing is a solution to overcome the path loss, atmospheric loss, polarization loss, etc. Also, wideband characteristics and compact size are desirable in satellite and SAR systems. This paper provides the combination of these features by microstrip structures.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 16