Search results

1 – 10 of 71
Article
Publication date: 21 September 2020

Sandhya Ramalingam, Umma Habiba Hyder Ali and Sharmeela Chenniappan

This paper aims to design a dual mode X-band substrate integrated waveguide (SIW) bandpass filter in the conventional SIW structure. A pair of back-to-back square and split ring

Abstract

Purpose

This paper aims to design a dual mode X-band substrate integrated waveguide (SIW) bandpass filter in the conventional SIW structure. A pair of back-to-back square and split ring resonator is introduced in the single-layer SIW bandpass filter. The various coupling configurations of SIW bandpass filter using split square ring slot resonator is designed to obtain dual resonant mode in the passband. It is shown that the measured results agree with the simulated results to meet compact size, lower the transmission coefficient, better reflection coefficient, sharp sideband rejection and minimal group delay.

Design/methodology/approach

A spurious suppression of wideband response is suppressed using an open stub in the transmission line. The width and length of the stub are tuned to suppress the wideband spurs in the stopband. The measured 3 dB bandwidth is from 8.76 to 14.24 GHz with a fractional bandwidth of 48.04% at a center frequency of 11.63 GHz, 12.59 GHz. The structure is analyzed using the equivalent circuit model, and the simulated analysis is based on an advanced design system software.

Findings

This paper discusses the characteristics of resonator below the waveguide cut-off frequency with their working principles and applications. Considering the difficulties in combining the resonators with a metallic waveguide, a new guided wave structure – the SIW is designed, which is synthesized on a planar substrate with linear periodic arrays of metallized via based on the printed circuit board.

Originality/value

This study has investigated the wave propagation problem of the SIW loaded by square ring slot-loaded resonator. The electric dipole nature of the resonator has been used to achieve a forward passband in a waveguide environment. The proposed filters have numerous advantages such as high-quality factor, low insertion loss, easy to integrate with the other planar circuits and, most importantly, compact size.

Details

Circuit World, vol. 48 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 28 December 2021

Karthie S., Zuvairiya Parveen J., Yogeshwari D. and Venkadeshwari E.

The purpose of this paper is to present the design of a compact microstrip bandpass filter (BPF) in dual-mode configuration loaded with cross-loop and square ring slots on a…

96

Abstract

Purpose

The purpose of this paper is to present the design of a compact microstrip bandpass filter (BPF) in dual-mode configuration loaded with cross-loop and square ring slots on a square patch resonator for C-band applications.

Design/methodology/approach

In the proposed design, the dual-mode response for the filter is realized with two transmission zeros (TZs) by the insertion of a perturbation element at the diagonal corner of the square patch resonator with orthogonal feed lines. Such TZs at the edges of the passband result in better selectivity for the proposed BPF. Moreover, the cross-loop and square ring slots are etched on a square patch resonator to obtain a miniaturized BPF.

Findings

The proposed dual-mode microstrip filter fabricated in RT/duroid 6010 substrate using PCB technology has a measured minimum insertion loss of 1.8 dB and return loss better than 24.5 dB with a fractional bandwidth (FBW) of 6.9%. A compact size of 7.35 × 7.35 mm2 is achieved for the slotted patch resonator-based dual-mode BPF at the center frequency of 4.76 GHz. As compared with the conventional square patch resonator, a size reduction of 61% is achieved with the proposed slotted design. The feasibility of the filter design is confirmed by the good agreement between the measured and simulated responses. The performance of the proposed filter structure is compared with other dual-mode filter works.

Originality/value

In the proposed work, a compact dual-mode BPF is reported with slotted structures. The conventional square patch resonator is deployed with cross-loop and square ring slots to design a dual-mode filter with a square perturbation element at its diagonal corner. The proposed filter exhibits compact size and favorable performance compared to other dual-mode filter works reported in literature. The aforementioned design of the dual-mode BPF at 4.76 GHz is suitable for applications in the lower part of the C-band.

Details

Microelectronics International, vol. 39 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 5 January 2024

Divya Shree M. and Srinivasa Rao Inabathini

This paper aims to present the simulation, fabrication and testing of a novel ultra-wide band (UWB) band-pass filters (BPFs) with better transmission and rejection characteristics…

Abstract

Purpose

This paper aims to present the simulation, fabrication and testing of a novel ultra-wide band (UWB) band-pass filters (BPFs) with better transmission and rejection characteristics on a low-loss Taconic substrate and analyze using the coupled theory of resonators for UWB range covering L, S, C and X bands for radars, global positioning system (GPS) and satellite communication applications.

Design/methodology/approach

The filter is designed with a bent coupled transmission line on the top copper layer. Defected ground structures (DGSs) like complementary split ring resonators (CSRRs), V-shaped resonators, rectangular slots and quad circle slots (positioned inwards and outwards) are etched in the ground layer of the filter. The circular orientation of V-shaped resonators adds compactness when linearly placed. By arranging the quad circle slots outwards and inwards at the corner and core of the ground plane, respectively, two filters (Filters I and II) are designed, fabricated and measured. These two filters feature a quasi-elliptic response with transmission zeros (TZs) on either side of the bandpass response, making it highly selective and reflection poles (RPs), resulting in a low-loss filter response. The transmission line model and coupled line theory are implemented to analyze the proposed filters.

Findings

Two filters by placing the quad circle slots outwards (Filter I) and inwards (Filter II) were designed, fabricated and tested. The fabricated model (Filter I) provides transmission with a maximum insertion loss of 2.65 dB from 1.5 GHz to 9.2 GHz. Four TZs and five RPs are observed in the frequency response. The lower and upper stopband band width (BW) of the measured Filter I are 1.2 GHz and 5.5 GHz of upper stopband BW with rejection level greater than 10 dB, respectively. Filter II (inward quad circle slots) operates from 1.4 GHz to 9.05 GHz with 1.65 dB maximum insertion loss inside the passband with four TZs and four RPs, which, in turn, enhances the filter characteristics in terms of selectivity, flatness and stopband. Moreover, 1 GHz BW of lower and upper stopbands are observed. Thus, the fabricated filters (Filters I and II) are therefore evaluated, and the outcomes show good agreement with the electromagnetic simulation response.

Research limitations/implications

The limitation of this work is the back radiation caused by DGS, which can be eradicated by placing the filter in the cavity and retaining its performance.

Practical implications

The proposed UWB BPFs with novel resonators find their role in the UWB range covering L, S, C and X bands for radars, GPS and satellite communication applications.

Originality/value

To the best of the authors’ knowledge, for the first time, the authors develop a compact UWB BPFs (Filters I and II) with BW greater than 7.5 GHz by combining reformed coupled lines and DGS resonators (CSRRs, V-shaped resonators [modified hairpin resonators], rectangular slots and quad circle slots [inwards and outwards]) for radars, GPS and satellite communication applications.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 4 July 2016

Antonios X. Lalas, Nikolaos V. Kantartzis and Theodoros D. Tsiboukis

Wireless power transfer (WPT) is deemed as an emerging technology with exciting applications, like wireless charging devices, and electric vehicles, whereas metamaterials exhibit…

Abstract

Purpose

Wireless power transfer (WPT) is deemed as an emerging technology with exciting applications, like wireless charging devices, and electric vehicles, whereas metamaterials exhibit exceptional properties. For every WPT system that occupies coupled magnetic resonances, it is also mandatory to involve resonators. The purpose of this paper is to introduce a new interdigitated split-ring resonator (I-SRR) as the basic part of a WPT system, pursuing advanced levels of efficiency.

Design/methodology/approach

A novel WPT system, which exploits I-SRRs as its elementary blocks, is comprehensively examined. The analysis investigates the distance between the modules, the distance between transmitting and receiving components as well as the geometrical features of the structure. Several numerical data derived via the finite element method unveil the merits of the featured configuration.

Findings

The proposed arrangement reveals a noteworthy enhancement of the power delivered to the load and a promising tuning of the operational frequency via the interdigitated topology. Several parametric studies clarify the principal characteristics of the proposed setup, facilitating the design of high-end systems. In particular, the distance between the resonators and the port loops affect the matching of the input and output ports, allowing optimisation of power efficiency, while the length of the I-SRR gap can determine the operational frequency.

Originality/value

Development of a WPT system, which utilises I-SRRs as its key elements. Incorporation of metamaterials into WPT technology. Efficiency enhancement of WPT systems and alternative design via geometrical modifications. The necessity of lumped elements to implement the WPT resonators is eliminated by utilising split-ring resonators components, enabling compactness in several implementations.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 July 2020

Elakkiya A., Radha Sankararajan, Sreeja B.S. and Manikandan E.

A novel and simple six-band metamaterial absorber is proposed in the terahertz region, which is composed of an I-shaped absorber and circular ring with four gaps and a continuous…

Abstract

Purpose

A novel and simple six-band metamaterial absorber is proposed in the terahertz region, which is composed of an I-shaped absorber and circular ring with four gaps and a continuous metal ground plane separated by only 0.125 mm polyimide dielectric substrate. Initially, I-shaped resonator gives three bands at 0.4, 0.468 and 0.4928 THz with the absorptivity of 99.3%, 97.9% and 99.1%, respectively. The purpose of this paper is to improve the number of bands, for which the authors added the circular ring with four gaps, so the simulated metamaterial absorber exhibited six absorption peaks at 0.3392, 0.3528, 0.3968, 0.4676, 0.4768 and 0.492 THz, with the absorption rate of 91.4%, 94.2%, 94.9%, 90.3%, 77.5% and 97.4%, respectively. The surface current distribution and angle independence are explained for all the six frequencies which are used to analyze the absorption mechanism clearly. Structure maximum uses the squares and circles, so it will make the fabrication easy. The multiband absorbers obtained here have potential applications in many engineering technology, thermal radiation, material detection and imaging and optoelectronic areas.

Design/methodology/approach

This paper presents the design of the six-band metamaterial absorber which is from the I-shaped resonator and circular ring with four gaps and the metallic ground plane separated by the 0.125 polyimide dielectric substrate. The absorber exhibited six absorption peaks at 0.3392, 0.3528, 0.3968, 0.4676, 0.4768 and 0.492 THz, with the absorption rate of 91.4%, 94.2%, 94.9%, 90.3%, 77.5% and 97.4%, respectively. From the fabrication point of view, the proposed six-band metamaterial absorber has a very simple geometrical structure, and it is very easy to be fabricated.

Findings

The authors present a new and simple design of six-band absorber based on an I-shaped absorber and circular ring with four gaps and a metallic ground plane separated by a polyimide layer having the thickness of 0.125 mm. Six different resonance absorption peaks are found at 0.3392, 0.3528, 0.3968, 0.4676 , 0.4768 and 0.492 THz. Surface current distribution and angle independence plot have been studied to understand the absorption behavior of the designed terahertz metamaterial absorber.

Originality/value

The multiband absorbers obtained here have potential applications in many engineering technology, thermal radiation, material detection, security, sensors, imaging and optoelectronic areas.

Details

Circuit World, vol. 46 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 16 June 2022

Kunal Kumar Singh, Santosh Kumar Mahto, Rashmi Sinha and Vishnu Priye

The purpose of this paper is to retrieve the dielectric constant of the material under test (MUT) by using an empirical relationship, which relates the dielectric properties with…

Abstract

Purpose

The purpose of this paper is to retrieve the dielectric constant of the material under test (MUT) by using an empirical relationship, which relates the dielectric properties with all three resonant frequencies of the proposed sensor. Each notch of the sensor is analyzed for sensitivity by using 15 different MUTs with relative permittivity ranging from 1.006 to 16.5 with a fixed dimension of 12 mm × 12 mm × 1.2 mm.

Design/methodology/approach

In this paper, we present a triple-notch metamaterial-based sensor for the solid dielectric characterization based on a microstrip transmission line and a direct coupled-double split ring resonator (DC-DSRR). The proposed sensor is designed, and its response is measured using a vector network analyzer to verify the concept. The shift in the resonant frequencies of the proposed sensor owing to contact with MUT is depicted as a function of permittivity using the curve fitting tool.

Findings

The proposed sensors have three notches, with the third notch being more sensitive than the first and second notch because of the high resonance frequency. For the first, second and third resonances, the proposed sensor has sensitivity ranges from 4.9% to 14.68%, 8.97% to 23.95% and 15.48% to 29.36%, respectively. The findings of the simulations, measurements and formulations are all in good accord.

Originality/value

In comparison to previous solid dielectric metamaterial sensors, the proposed triple-notch sensor based on a microstrip transmission line and DC-DSRR has the following advantages: it has a simple unit-cell structure and meets the needs of miniaturization, compact size, low cost and improved sensitivity. It determines the relative permittivity using all three notches so that the accuracy of the measurement is enhanced as compared with single- and double-notch sensors.

Details

Sensor Review, vol. 42 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 March 2023

Kunal Kumar Singh, Santosh Kumar Mahto and Rashmi Sinha

This paper aims to concentrate on research that has been conducted in the previous decade on metamaterial (MTM)-based sensors for material characterization, which includes solid…

Abstract

Purpose

This paper aims to concentrate on research that has been conducted in the previous decade on metamaterial (MTM)-based sensors for material characterization, which includes solid dielectrics, micro fluids and biomolecules.

Design/methodology/approach

There has been a vast advancement in sensors based on MTM since the past few decades. MTM elements provide a sensitive response to materials while having a tiny footprint, making them an appealing alternative for realizing diverse sensing devices.

Findings

Related research papers on MTM sensors published in reputable journals were reviewed in this report, with a specific emphasis on the structure, size and nature of the materials characterized. Because electromagnetic wave interaction excites MTM structures, sensing applications around the electromagnetic spectrum are possible.

Originality/value

The paper contains valuable information on MTM sensor technology for material characterization, and this study also highlights the challenges and approaches that will guide future development.

Details

Sensor Review, vol. 43 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 28 March 2023

Dimitrios I. Karatzidis, Theodoros T. Zygiridis and Nikolaos V. Kantartzis

The purpose of this paper is to present a family of robust metasurface-oriented wireless power transfer systems with improved efficiency and size compactness. The effect of…

Abstract

Purpose

The purpose of this paper is to present a family of robust metasurface-oriented wireless power transfer systems with improved efficiency and size compactness. The effect of geometric and structural features on the overall efficiency and miniaturisation is elaborately studied, while the presence of substrate losses is, also, considered. Moreover, to further enhance the performance, possible means for reducing the operating frequency, without comprising the unit-cell size, are proposed.

Design/methodology/approach

The key element of the design technique is the edge-coupled split-ring resonators patterned in various metasurface configurations and optimally placed to increase the total efficiency. To this goal, a rigorous three-dimensional algorithm, launching a new high-order prism macroelement, is developed in this paper for the fast evaluation of the required quantities. The featured scheme can host diverse approximation orders, while it is drastically more economical than existing methods. Hence, the demanding wireless power transfer systems are precisely modelled via reduced degrees of freedom, without the need to conduct large-scale simulations.

Findings

Numerical results, compared with measured data from fabricated prototypes, validate the design methodology and prove its competence to provide enhanced metasurface wireless power transfer systems. An assortment of optimized 3 x 3 and 5 x 5 metamaterial setups is investigated, and interesting deductions, regarding the impact of the inter-element gaps, the distance between the transmitting and receiving components and the substrate losses, are derived. Also, the proposed vector macroelement technique overwhelms typical implementations in terms of computational burden, particularly when combined with the relevant commercial software packages.

Originality/value

Systematic design of advanced real-world wireless power transfer structures through optimally selected metasurfaces with fully controllable electromagnetic properties is presented. The analysis is performed by means of a rapid prism macroelement methodology, which leads to very confined meshes, accurate results and significantly reduced overhead. The selected metamaterial resonators are found to be very flexible and reconfigurable, even in the case of large substrate conductivity losses, whereas their contribution to the system’s total efficiency is decisive.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 November 2013

Kamil Boratay Alici, Mehmet Deniz Caliskan, Filiberto Bilotti, Alessandro Toscano, Lucio Vegni and Ekmel Ozbay

Metamaterial unit cells composed of deep subwavelength resonators brought up new aspects to the antenna miniaturization problem. The paper experimentally demonstrates a…

Abstract

Purpose

Metamaterial unit cells composed of deep subwavelength resonators brought up new aspects to the antenna miniaturization problem. The paper experimentally demonstrates a metamaterial-inspired miniaturization method for circular patch antennas. In the proposed layouts, the space between the patch and the ground plane is filled with a proper metamaterial composed of either multiple split-ring or spiral resonators (SRs). The authors have manufactured two different patch antennas, achieving an electrical size of λ/3.69 and λ/8.26, respectively. The paper aims to discuss these issues.

Design/methodology/approach

The operation of such a radiative component has been predicted by using a simple theoretical formulation based on the cavity model. The experimental characterization of the antenna has been performed by using a HP8510C vector network analyzer, standard horn antennas, automated rotary stages, coaxial cables with 50 Ω characteristic impedance and absorbers. Before the characterization measurements we performed a full two-port calibration.

Findings

Electrically small circular patch antennas loaded with single layer metamaterials experimentally demonstrated to acceptable figures of merit for applications. The proposed miniaturization technique is potentially promising for antenna applications and the results presented in the paper constitute a relevant proof for the usefulness of the metamaterial concepts in antenna miniaturization problems.

Originality/value

Rigorous experimental characterization of several meta material loaded antennas and proof of principle results were provided.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 December 2018

A. Vivek, K. Shambavi and Zachariah C. Alex

This paper aims to focus on research work related to metamaterial-based sensors for material characterization that have been developed for past ten years. A decade of research on…

1324

Abstract

Purpose

This paper aims to focus on research work related to metamaterial-based sensors for material characterization that have been developed for past ten years. A decade of research on metamaterial for sensing application has led to the advancement of compact and improved sensors.

Design/methodology/approach

In this study, relevant research papers on metamaterial sensors for material characterization published in reputed journals during the period 2007-2018 were reviewed, particularly focusing on shape, size and nature of materials characterized. Each sensor with its design and performance parameters have been summarized and discussed here.

Findings

As metamaterial structures are excited by electromagnetic wave interaction, sensing application throughout electromagnetic spectrum is possible. Recent advancement in fabrication techniques and improvement in metamaterial structures have led to the development of compact, label free and reversible sensors with high sensitivity.

Originality/value

The paper provides useful information on the development of metamaterial sensors for material characterization.

Details

Sensor Review, vol. 39 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 71