Search results

1 – 10 of 31
Open Access
Article
Publication date: 1 July 2021

Sarfaraz Kamangar, N. Ameer Ahamad, N. Nik-Ghazali, Ali E. Anqi, Ali Algahtani, C. Ahamed Saleel, Syed Javed, Vineet Tirth and T.M. Yunus Khan

Coronary artery disease (CAD) is reported as one of the most common sources of death all over the world. The presence of stenosis (plaque) in the coronary arteries results in the…

Abstract

Purpose

Coronary artery disease (CAD) is reported as one of the most common sources of death all over the world. The presence of stenosis (plaque) in the coronary arteries results in the restriction of blood supply, leading to myocardial infarction. The current study investigates the influence of multi stenosis on hemodynamic properties in a patient-specific left coronary artery.

Design/methodology/approach

A three-dimensional model of the patient-specific left coronary artery was reconstructed based on computed tomography (CT) scan images using MIMICS-20 software. The diseased model of the left coronary artery was investigated, having the narrowing of 90% and 70% of area stenosis (AS) at the left anterior descending (LAD) and left circumflex (LCX), respectively.

Findings

The results indicate that the upstream region of stenosis experiences very high pressure for 90% AS during the systolic period of the cardiac cycle. The pressure drops maximum as the flow travels into the stenotic zone, and the high flow velocities were observed across the 90% AS. The higher wall shear stresses occur at the stenosis region, and it increases with the increase in the flow rate. It is found that the maximum wall shear stress across 90% AS is at the highest risk for rupture. A recirculation region immediately after the stenosis results in the further development of stenosis.

Originality/value

The current study provides evidence that there is a strong effect of multi-stenosis on the blood flow in the left coronary artery.

Details

Frontiers in Engineering and Built Environment, vol. 1 no. 1
Type: Research Article
ISSN: 2634-2499

Keywords

Content available
Article
Publication date: 27 April 2012

227

Abstract

Details

International Journal of Health Care Quality Assurance, vol. 25 no. 4
Type: Research Article
ISSN: 0952-6862

Keywords

Open Access
Article
Publication date: 2 January 2023

Sara Candidori, Serena Graziosi, Paola Russo, Kasra Osouli, Francesco De Gaetano, Alberto Antonio Zanini and Maria Laura Costantino

The purpose of this study is to describe the design and validation of a three-dimensional (3D)-printed phantom of a uterus to support the development of uterine balloon tamponade…

2243

Abstract

Purpose

The purpose of this study is to describe the design and validation of a three-dimensional (3D)-printed phantom of a uterus to support the development of uterine balloon tamponade devices conceived to stop post-partum haemorrhages (PPHs).

Design/methodology/approach

The phantom 3D model is generated by analysing the main requirements for validating uterine balloon tamponade devices. A modular approach is implemented to guarantee that the phantom allows testing these devices under multiple working conditions. Once finalised the design, the phantom effectiveness is validated experimentally.

Findings

The modular phantom allows performing the required measurements for testing the performance of devices designed to stop PPH.

Social implications

PPH is the leading obstetric cause of maternal death worldwide, mainly in low- and middle-income countries. The proposed phantom could speed up and optimise the design and validation of devices for PPH treatment, reducing the maternal mortality ratio.

Originality/value

To the best of the authors’ knowledge, the 3D-printed phantom represents the first example of a modular, flexible and transparent uterus model. It can be used to validate and perform usability tests of medical devices.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 12 March 2020

Marius Siegfarth, Tim Philipp Pusch, Antoine Pfeil, Pierre Renaud and Jan Stallkamp

This study aims to investigate the potential of using polymer multi-material additive manufacturing (MMAM) to produce miniature hydraulic piston actuators combining rigid…

2007

Abstract

Purpose

This study aims to investigate the potential of using polymer multi-material additive manufacturing (MMAM) to produce miniature hydraulic piston actuators combining rigid structures and flexible seals. Such actuators offer great potential for medical robots in X-ray and magnetic resonance environments, where conventional piston actuators cannot be used because of safety issues caused by metal components.

Design/methodology/approach

Hydraulic pistons with two different integrated flexible seal shapes are designed and manufactured using MMAM. Design 1 features a ring-shaped seal made from a flexible material that is printed on the surface of the rigid piston shaft. Design 2 appears identical from the outside, yet an axial opening in the piston shaft is added to enable self-reinforced sealing as fluid pressure increases. For both designs, samples with three different outer diameters are fabricated leading to a total of six different piston versions. The pistons are then evaluated regarding leakage, friction and durability.

Findings

Measurement results show that the friction force for Design 2 is lower than that of Design 1, making Design 2 more suitable for the intended application. None of the versions of Design 2 shows leakage for pressures up to 1.5 MPa. For Design 1, leak-tightness varies with the outer diameter, yet none of the versions is consistently leak-tight at 1.5 MPa. Furthermore, the results show that prolonged exposure to water decreases the durability of the flexible material significantly. The durability the authors observe may, however, be sufficient for short-term or single-use devices.

Originality/value

The authors investigate a novel design approach for hydraulic piston actuators based on MMAM. These actuators are of particular interest for patient-specific medical devices used in radiological interventions, where metal-free components are required to safely operate in X-ray and magnetic resonance environments. This study may serve as a basis for the development of new actuators, as it shows a feasible solution, yet pointing out critical aspects such as the influence of small geometry changes or material performance changes caused by water absorption.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 30 May 2023

Tommaso Stomaci, Francesco Buonamici, Giacomo Gelati, Francesco Meucci and Monica Carfagni

Left atrial appendage occlusion (LAAO) is a structural interventional cardiology procedure that offers several possibilities for the application of additive manufacturing…

Abstract

Purpose

Left atrial appendage occlusion (LAAO) is a structural interventional cardiology procedure that offers several possibilities for the application of additive manufacturing technologies. The literature shows a growing interest in the use of 3D-printed models for LAAO procedure planning and occlusion device choice. This study aims to describe a full workflow to create a 3D-printed LAA model for LAAO procedure planning.

Design/methodology/approach

The workflow starts with the patient’s computed tomography diagnostic image selection. Segmentation in a commercial software provides initial geometrical models in standard tessellation language (STL) format that are then preprocessed for print in dedicated software. Models are printed using a commercial stereolithography machine and postprocessing is performed.

Findings

Models produced with the described workflow have been used at the Careggi Hospital of Florence as LAAO auxiliary planning tool in 10 cases of interest, demonstrating a good correlation with state-of-the-art software for device selection and improving the surgeon’s understanding of patient anatomy and device positioning.

Originality/value

3D-printed models for the LAAO planning are already described in the literature. The novelty of the article lies in the detailed description of a robust workflow for the creation of these models. The robustness of the method is demonstrated by the coherent results obtained for the 10 different cases studied.

Content available
Article
Publication date: 1 April 2006

129

Abstract

Details

Clinical Governance: An International Journal, vol. 11 no. 2
Type: Research Article
ISSN: 1477-7274

Open Access
Article
Publication date: 21 December 2021

Vahid Badeli, Sascha Ranftl, Gian Marco Melito, Alice Reinbacher-Köstinger, Wolfgang Von Der Linden, Katrin Ellermann and Oszkar Biro

This paper aims to introduce a non-invasive and convenient method to detect a life-threatening disease called aortic dissection. A Bayesian inference based on enhanced…

Abstract

Purpose

This paper aims to introduce a non-invasive and convenient method to detect a life-threatening disease called aortic dissection. A Bayesian inference based on enhanced multi-sensors impedance cardiography (ICG) method has been applied to classify signals from healthy and sick patients.

Design/methodology/approach

A 3D numerical model consisting of simplified organ geometries is used to simulate the electrical impedance changes in the ICG-relevant domain of the human torso. The Bayesian probability theory is used for detecting an aortic dissection, which provides information about the probabilities for both cases, a dissected and a healthy aorta. Thus, the reliability and the uncertainty of the disease identification are found by this method and may indicate further diagnostic clarification.

Findings

The Bayesian classification shows that the enhanced multi-sensors ICG is more reliable in detecting aortic dissection than conventional ICG. Bayesian probability theory allows a rigorous quantification of all uncertainties to draw reliable conclusions for the medical treatment of aortic dissection.

Originality/value

This paper presents a non-invasive and reliable method based on a numerical simulation that could be beneficial for the medical management of aortic dissection patients. With this method, clinicians would be able to monitor the patient’s status and make better decisions in the treatment procedure of each patient.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 28 August 2021

Luca Gabriele De Vivo Nicoloso, Joshua Pelz, Herb Barrack and Falko Kuester

There are over 40 million amputees globally with more than 185,000 Americans losing their limbs every year. For most of the world, prosthetic devices remain too expensive and…

2782

Abstract

Purpose

There are over 40 million amputees globally with more than 185,000 Americans losing their limbs every year. For most of the world, prosthetic devices remain too expensive and uncomfortable. This paper aims to outline advancements made by a multidisciplinary research group, interested in advancing the restoration of human motion through accessible lower limb prostheses.

Design/methodology/approach

Customization, comfort and functionality are the most important metrics reported by prosthetists and patients. The work of this paper presents the design and manufacturing of a custom made, cost-effective and functional three-dimensional (3D) printed transtibial prosthesis monocoque design. The design of the prosthesis integrates 3D imaging, modelling and optimization techniques coupled with additive manufacturing.

Findings

The successful fabrication of a functional monocoque prosthesis through 3D printing indicates the workflow may be a solution to the worldwide accessibility crisis. The digital workflow developed in this work offers great potential for providing prosthetic devices to rural communities, which lack access to skilled prosthetic physicians. The authors found that using the workflow together with 3D printing, this study can create custom monocoque prostheses (Figure 16). These prostheses are comfortable, functional and properly aligned. In comparison with traditional prosthetic devices, the authors slowered the average cost, weight and time of production by 95%, 55% and 95%, respectively.

Social implications

This novel digital design and manufacturing workflow has the potential to democratize and globally proliferate access to prosthetic devices, which restore the patient’s mobility, quality of life and health. LIMBER’s toolbox can reach places where proper prosthetic and orthotic care is not available. The digital workflow reduces the cost of making custom devices by an order of magnitude, enabling broader reach, faster access and improved comfort. This is particularly important for children who grow quickly and need new devices every few months or years, timely access is both physically and psychologically important.

Originality/value

In this manuscript, the authors show the application of digital design techniques for fabricating prosthetic devices. The proposed workflow implements several advantageous changes and, most importantly, digitally blends the three components of a transtibial prosthesis into a single, 3D printable monocoque device. The development of a novel unibody transtibial device that is properly aligned and adjusted digitally, greatly reduces the number of visits an amputee must make to a clinic to have a certified prosthetist adjust and modify their prosthesis. The authors believe this novel workflow has the potential to ease the worldwide accessibility crisis for prostheses.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 12 February 2018

Kerry Wilbur, Arwa Sahal and Dina Elgaily

Patient safety is gaining prominence in health professional curricula. Patient safety must be complemented by teaching and skill development in practice settings. The purpose of…

Abstract

Purpose

Patient safety is gaining prominence in health professional curricula. Patient safety must be complemented by teaching and skill development in practice settings. The purpose of this paper is to explore how experienced pharmacists identify, prioritize and communicate adverse drug effects to patients.

Design/methodology/approach

A focus group discussion was conducted with cardiology pharmacy specialists working in a Doha hospital, Qatar. The topic guide sought to explore participants’ views, experiences and approaches to educating patients regarding specific cardiovascular therapy safety and tolerability. Discussions were audio-recorded and transcribed verbatim. Data were coded and organized around identified themes and sub-themes. Working theories were developed by the three authors based on relevant topic characteristics associated with the means in which pharmacists prioritize and choose adverse effect information to communicate to patients.

Findings

Nine pharmacists participated in the discussion. The specific adverse effects prioritized were consistent with the reported highest prevalence. Concepts and connections to three main themes described how pharmacists further tailored patient counseling: potential adverse effects and their perceived importance; patient encounter; and cultural factors. Pharmacists relied on initial patient dialogue to judge an individual’s needs and capabilities to digest safety information, and drew heavily upon experience with other counseling encounters to further prioritize this information, processes dependent upon development and accessing exemplar cases.

Originality/value

The findings underscore practical experience as a critical instructional element of undergraduate health professional patient safety curricula and for developing associated clinical reasoning.

Details

International Journal of Health Care Quality Assurance, vol. 31 no. 1
Type: Research Article
ISSN: 0952-6862

Keywords

Content available
Article
Publication date: 1 August 2005

89

Abstract

Details

International Journal of Health Care Quality Assurance, vol. 18 no. 5
Type: Research Article
ISSN: 0952-6862

Keywords

1 – 10 of 31