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Abstract
Purpose – This paper aims to introduce a non-invasive and convenient method to detect a life-threatening
disease called aortic dissection. A Bayesian inference based on enhanced multi-sensors impedance
cardiography (ICG) method has been applied to classify signals from healthy and sick patients.
Design/methodology/approach – A 3D numerical model consisting of simplified organ geometries is
used to simulate the electrical impedance changes in the ICG-relevant domain of the human torso. The
Bayesian probability theory is used for detecting an aortic dissection, which provides information about
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the probabilities for both cases, a dissected and a healthy aorta. Thus, the reliability and the uncertainty of the
disease identification are found by this method andmay indicate further diagnostic clarification.
Findings – The Bayesian classification shows that the enhanced multi-sensors ICG is more reliable in
detecting aortic dissection than conventional ICG. Bayesian probability theory allows a rigorous
quantification of all uncertainties to draw reliable conclusions for themedical treatment of aortic dissection.
Originality/value – This paper presents a non-invasive and reliable method based on a numerical simulation
that could be beneficial for the medical management of aortic dissection patients. With this method, clinicians
would be able tomonitor the patient’s status andmake better decisions in the treatment procedure of each patient.

Keywords Numerical analysis, Finite element method, Sensors, Impedance, Bioelectromagnetics,
Uncertainties in electromagnetics, Bayesian inference, Probability theory, Impedance cardiography,
Aortic dissection

Paper type Research paper

Nomenclature
x = Input parameters corresponding to Z . The values of these parameters are unknown and must be

inferred in the inverse problem;
x0 = Ameasured set of values for input parameters corresponding to Z 0;
Z = ICG measurements for which the inverse problem should be solved based on the previously cali-

brated surrogate model. In this case, artificial data from the surrogate model, which is superim-
posed with random noise; and

Z 0 = ICGmeasurements used for calibration/training of the surrogate model. In this case, the FEM data.

1. Introduction
Aortic dissection (AD) is a hazardous aortic disease with high mortality. AD is commonly
initiated by forming a tear in the intima, allowing blood to flow into the aortic wall. The
fluid-dynamical forces separate the layers of the aortic wall, resulting in the formation of a
true lumen and a false lumen (Figure 1) (Silaschi et al., 2017). The false lumen represents the
blood-filled space between the dissected layers of the aortic wall, whereas the true lumen is
the usual passageway of blood. The symptoms of AD patients are sudden severe chest or
upper back pain, which are not particularly assignable to this disease.

The feasibility of impedance cardiography (ICG) in the identification of AD has been
investigated in Badeli et al. (2020), Reinbacher-Köstinger et al. (2019). Accordingly, it was
concluded that monitoring the ICG signal could be an asset for detecting or tracking the
disease’s development, such as false lumen expansion.

Medical management of AD is based mainly on personal experience, expert opinion and
historical observational studies as there is a paucity of randomized controlled studies.
Clinicians very often have to make critical decisions with high uncertainties during the

Figure 1.
Dissected Aorta

(Silaschi et al., 2017)
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diagnosis of the patients. However, they try to reduce the uncertainty in clinical decisions
and improve the patient’s condition by using the available information obtained from
various clinical and diagnostic tests, together with the patient’s medical condition. The
natural framework for quantifying uncertainties is the Bayesian probability theory. It is
proven mathematically in Cox (1946), and in a more modern presentation in Sivia and
Skilling (2006, App.B], that the Bayesian probability calculus is unique and thus, in fact, the
only consistent and rigorous calculus to deal with uncertainties. Therefore, Bayesian
probability theory could be applied to combine the results of multiple tests while treating
AD. Thereby, in this paper, for detecting an AD, a Bayesian inference based on a proposed
multi-sensors ICG method is performed in which the inverse problem is solved by Bayesian
probability theory.

2. Simulation model
2.1 Sources of bioimpedance changes
The time-dependent transthoracic impedance Z tð Þ is composed of static thoracic base
impedance Z0 and a time-dependent pulsatile impedance change DZ tð Þ. By eliminating the
oscillating cardiac-asynchronous respiratory component, DZ tð Þ is synchronous to cardiac
activity. During the systolic phase of a cardiac cycle, the heart contracts to pump blood into
the aorta, and in the diastolic phase, the heart relaxes after contraction. This pulsatile flow
causes the volumetric expansion of the aorta and, in turn, a variation of blood conductivity
inside the aorta (Badeli et al., 2020; Reinbacher-Köstinger et al., 2019). Another reason for
blood conductivity changes is the orientation and deformation of the red blood cells (RBCs)
in flowing blood. At higher velocities, the shear stress increases, which consequently
deforms the RBCs in the layer with the highest stress close to the vessel wall and also aligns
them throughout the vessel. Both effects lead to a higher conductivity compared to that of
resting blood (s 0) (Badeli et al., 2020). Based on the formulations described in (Badeli et al.,
2020), the blood conductivity sblood has been defined as:

sblood v tð Þ;H
� �

¼ s 0 Hð Þ þ Dsblood v tð Þ;H
� �

; (1)

in which v(t) and H represent the time-dependent blood velocity and the blood hematocrit
level (the volume fraction of RBCs in the whole blood volume), respectively.

2.2 Finite element model
A 3D numerical simulation model has been set up in COMSOL Multiphysics for the
underlying time-harmonic current flow problem. Since the cardiac cycle duration is much
longer than the period of the injected current, simulations can be performed in the frequency
domain. The electric potential drop is measured between the measuring sensors by solving
Laplace’s equation for the electric potentialV:

r � s þ jv«½ �rVð Þ ¼ 0: (2)

The model consists of a simplified geometry of the human thorax, as shown in Figure 2. A
proposed multi-sensors configuration is used in which five pairs of source (injection)
electrodes are placed on the surface of the thorax (each pair in one vertical line), which inject
an alternating current with a magnitude of 5mA and a frequency of 100 kHz
asynchronously. For each injection, the electric potential drop is evaluated between five
measurement sensor pairs (each pair in one vertical line) which leads to the thoracic
impedance:
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Z ¼ V ̲ top � V̲bottom

I ̲
: (3)

The boundary conditions are
� V = const and

ð
S
s þ jv«½ �rV � ndS ¼ I0, on the top source electrode;

� V = 0, on the bottom source electrode; and
� n � s þ jv«½ �rV ¼ 0, on the thorax surface.

where n is the normal unit vector. The blood conductivity in the aorta is changing according to (1)
during the cardiac cycle. The electrical conductivity and permittivity of tissue types which are
considered in the simulationmodel have been taken from data provided in Gabriel (1996). For other
surrounding materials such as muscles, ribs and fat which are not considered directly in the
simulationmodel, amean conductivity and permittivity is assigned to the thorax domain to provide
a realistic value for the static thoracic impedance Z0 . To reduce the computational cost, only the
first half of the cardiac cycle (0.5 s), which is themore significant phase, is considered.

Besides the fact that the false lumen changes the shape of the aorta, the blood flow is also
disturbed and creates recirculation around the dissection. Flow disturbances inhibit the
deformation and orientation of the RBCs; thus, the flow shear rate and, consequently,
the blood flow induced conductivity changes will alter from that in a healthy case. These
assumptions have been considered in the simulation model for different stages of AD in the
same way as reported in Badeli et al. (2020).

Figure 2
Simulationmodel

setup
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The simulation model shown in Figure 2 will be used later to develop two surrogate
models (for healthy and AD cases). For this purpose, different input parameters (to cover
different physiological and pathological states) will be considered. These surrogate models
will be used instead of the simulation model for further investigations.

3. Bayesian multi-sensors inference
3.1 Basic rules of probability theory
Probability is a measure of the truthfulness of a proposition (hypothesis). One has to
distinguish between the probability p(x) that a certain proposition x is true without further
knowledge and the conditional probability p xjyð Þ that the same proposition holds
conditioned on some given information y, e.g. some measured data. Like in Boolean algebra,
propositions can be combined by the logical AND (^) and a logical OR (�). From hereon
p x ^ yð Þ will be abbreviated by p(x,y). Logically, for conditionally independent x and y, one
finds p(x,y) = p(x)p(y). By demanding a consistent logic only, the sum rule and the product
rule are derived, see (Sivia and Skilling, 2006, Ch.1] (von der Linden et al., 2014, Ch.1], or
(Jaynes, 2003, Ch.1,2]. From them, one finds the marginalization rule and Bayes’ theorem.
For continuous variables, the marginalization rule takes an integral form:

p xð Þ ¼
ð
p xjyð Þ p yð Þdy : (4)

Bayes’ theorem reads:

p xjyð Þ ¼ p yjxð Þ � p xð Þ
p yð Þ : (5)

For example, x could be the model parameters and y the corresponding measured values.
Then, p(x) is the prior probability for the state of knowledge, or ignorance, about the
parameters before the experiment. Detailed information for finding prior distributions is
provided in Von Toussaint (2011). The likelihood p yjxð Þ is the probability for the data y,
given all parameters and the underlying physical model. In other words, by assuming
certain model parameters, one should be able to determine the ideal values of the data f.
Since experimental data always have noise, their measured value will be:

y ¼ f þ « ; (6)

where « is the experimental noise/uncertainty. The posterior p xjyð Þ gives the probability
that, by knowing the data, certain values of parameters describe the model. The
denominator in equation (5) is the so-called evidence or the normalization.

3.2 Likelihood function and the surrogate model
In the inverse problem, one wants to infer the underlying model parameters, e.g. the false
lumen radius, from the ICG measurements. Preliminarily, the parameters and the
measurement data shall be denoted by x and y, respectively. Assuming that the model for
the human body and its mathematical description, as far as ICG is concerned, is sufficiently
realistic, then for specific model input-parameters x, the finite element (FEM) simulation
yields values for the impedance Z = f(x) that should deviate from the measured data y only
due to the measurement noise, as discussed just before. Let us assume that the noise « is
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described by a density function r (« ). Then the likelihood function, i.e. the probability
density for the measured data, is given by p yjxð Þ ¼ r f xð Þ � y

� �
according to (6). The

sought-for posterior probability for the model parameters, i.e. p xjyð Þ, is proportional to r (f
(x) – y)p(x). To plot the posterior or evaluate its characteristics, like mean and variance,
p yjxð Þ needs to be computed for a large numberM of parameter values x. That implies that
the FEM simulation has to be performedM-times to provide the true impedance value f(x) in
the likelihood. This will be very costly as far as CPU time is concerned. Therefore, it would
be advantageous to have an easy to calculate surrogate model for the impedance to replace
the complex FEM simulation.

Here two surrogate models, one for the healthy and one for the sick patient, will be
developed. The simulation parameters for developing surrogate models have been chosen
according to the sensitivity analysis study in the previous work (Badeli et al., 2020). The
surrogate model for the healthy case depends on only two patient variables, namely
the maximum radius of the true lumen RTL and the blood hematocrit levelH. In the case of a
sick patient, the surrogate model additionally depends on the radius of the false lumen RFL
and the angular position of the false lumen relative to the true lumen measured from the x-
axis plane, aFL (Figure 2). These parameters enter in Bayesian probability theory as random
variables. For a detailed discussion on random variables, see (Sivia and Skilling, 2006, Ch.1]
(von der Linden et al., 2014, Ch.1], or (Jaynes, 2003, Ch.1,2]. The prior distributions for all
variables have been assumed to be uniform within certain ranges since lack of knowledge
does not allow specification of more informative priors. Table 1 includes the values for the
prior ranges. Further, all four variables are logically independent of each other.

All variables RTL;H ;RFL;aFLð Þ are subsumed in a vector x ¼ x1; x2; � � � ; xNxð ÞT , with
Nx = 2 (Nx = 4) in the healthy (sick) case. Next, the time-dependent simulation outcome for
the impedance f x; tð Þ shall be expanded in terms of time-independent basis functions
f p xð Þ by:

f x; tð Þ ¼ f x; c tð Þ
� �

¼
X
p2P

cp tð Þf p xð Þ: (7)

In this work, a Polynomial Chaos Expansion (PCE) is used, e.g. (Crestaux et al., 2009), where
the basis functions f p xð Þ are multi-variate polynomials that are orthogonal with respect to
the L2 inner product with probability measure p xð Þ. c ¼ fcpg is a set of expansion
coefficients and P is a set of multi-indices p, denoting the expansion-order of each variable
x1; x2; . . . xNx in the polynomial f p xð Þ. Next, FEM simulations are performed for a
sufficient number of values for the input parameters. The input parameter values are
indexed bym, x0 mð Þ, and gathered in the set x0 ¼ fx0 mð ÞgNs

m¼1 (Ns = 300) separately for the
healthy and the sick condition. Then, the hyper-parameters c are inferred from the
simulation data, i.e. x0 and the corresponding simulation output values. Then, when new,

Table 1.
Specification of prior
probabilities for the

healthy and sick
study cases

Cases Variable Distribution Limits Unit

Healthy RTL Uniform [1.35 1.95] cm
Healthy H Uniform [0.35 0.55] 1
Sick RTL Uniform [1.35 1.95] cm
Sick H Uniform [0.35 0.55] 1
Sick RFL Uniform [0.3 1.5] cm
Sick aFL Uniform [2.9 3.65] rad
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real impedance data from patients are available, the surrogate models can be used instead of
the FEM simulations to determine the likelihood function and, subsequently, to calculate the
posterior probability for the patient-specific parameters of interest x.

In more detail, in the FEM simulation, 5 injection electrode pairs with labels i = 1,. . .,5
and 5 sensor pairs with labels j = 1,. . .,5 are located at positions that are best suited for
inferring the sought-for patient parameters x. The measurements are performed for a time
series tk (k = 1,. . .,Nt) of half a cardiac cycle. For each of the Ns parameter sets x0 mð Þ, the
resulting impedance data sets are fZ 0

ijk
mð Þg. One simulation for the healthy (H) and one for

the sick (S) condition is performed. The FEM simulation has to be performed for each
injection pair i separately to generate one corresponding time-series tk with each sensor pair
j. From these data, the parameters c for the two 4th-order surrogate model functions (PCE-
cardinality jPj ¼ 4) are determined as follows. It is assumed that the impedance-dependence
on the patient-specific parameters x depends on the injection/sensor positions, as well as on
the time within the cardiac cycle. Hence, the coefficients c depend on the indices i,j,k. The
surrogate function for the impedance Zijk corresponding to injection/sensor pair indices i,j
measured at time tk is approximated by:

f x; cijkð Þ ¼
X
p2P

c ijkð Þ
p Up xð Þ : (8)

Next, the parameters c ijkð Þ need to be estimated based on the FEM simulations described
before. This is again an inverse problem that can be dealt with consistently in the frame of
Bayesian probability theory. First, the simulation for one set of patient parameters x is
considered. Bayes’ theorem in (5) is invoked, where y now stands for the FEM data for the
impedances Z

0 ¼ fZ 0
ijkg, corresponding to specific input parameter values, and x stands now

for the unknown coefficients c ¼ fcijkg.
A simplification of the notation is achieved when a compound index l is introduced that

enumerates the possible index sets {i,j,k}. Then, Z
0 ¼ fZ 0

l g and c ¼ fclg. The likelihood
that covers the uncertainty of the data can be described by a Gaussian:

p Z
0 jc;x

� �
¼
Y
l

p Z
0
l jcl ;x

� �
; (9)

with

p Z
0
l jcl ;x

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffi

2pD2
l

q exp �
Z

0
l � f x; clð Þ

� �2
2D2

l

0
@

1
A
: (10)

The product form is due to the independence of the noises of the data. For the FEM-
simulation, Dl stands for the numerical uncertainty, while later on Dlwill be the sensor noise
level. In both cases, the values ofDl are usually well known. For the sake of simpler notation,
D will therefore not be written explicitly in the conditional complex of the probabilities.
Likewise, the measurement times tk will be suppressed in the conditional complex. In
general, the noise may depend on the electrode configuration denoted by the index pair i,j.
To determine the posterior probability for the sets of coefficients, we also need the prior
p cð Þ. As there is no resilient prior knowledge, an uninformative constant prior can be used.
In this case, the prior can be ignored altogether and
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p cjZ 0
;x

� �
/ p Z

0 jc;x
� �

: (11)

Ns such FEM data sets Z 0 mð Þ exist corresponding to the Ns training sets for the patient
parameters x mð Þ. Along the previous line of reasoning with D0 ¼ fx0 mð Þ;Z 0 mð ÞgNs

m¼1, i.e. x
0

instead of x in (11), we find:

p cjD0� � /Y
l;m

exp � Z 0
l mð Þ � f x0 mð Þ; cl

� �� �2
2Dl

 !
: (12)

There are two routes to proceed. In the first case, one assumes that the model description of
the human body is correct and the FEM simulation, therefore, yields the impedance values
that would be observable in a noise-free experiment. In that case, the only uncertainty stems
from the numerical errors, which are very small. Due to the tiny noise level, the likelihood
then turns into a Dirac-delta distribution, i.e:

p cjD0� �!Y
l

d cl � ĉ lð Þ ; (13)

with

ĉ l ¼ argmax
cl

p cjD0� �
: (14)

This delta-posterior probability leaves no room for uncertainties regarding the coefficients
c. In Appendix 1 it has been shown that the solution of equation (14) is given by

ĉpl ¼
X
m

MTMÞ�1MTÞpmZ 0
l mð Þ Mmp :¼ Up x0 mð Þ� �

:
��

(15)

This is only valid if MTM is not singular. The second line of reasoning includes the
uncertainty of the model description of the human body and the impedance calculation
therein. In that case, the impedances obtained by FEM have additional uncertainties, which
can also be described by the Gaussian in (10) and the noise level Dl has to be chosen
appropriately.

3.3 Inverse problem
Now that the probability for the coefficients of the surrogate model c, are determined from
the training dataD

0
, the surrogate model can be used instead of the FEM simulations to infer

the patient parameters x from newly measured impedance data Z ¼ fZlg for which x is not
known. I.e., one wants to compute the probability density for the parameters x that
correspond to impedance measurements Z , based on the previous data summarized by D

0
,

i.e. p xjZ;D0ð Þ. It is important to understand the difference in the meaning of Z 0, for which a
corresponding set of values for the input parameters x0 is known and used to determine the
surrogate models’ coefficients c, and Z which will be introduced as independently measured
set of ICG signals for which the corresponding set of values for the input parameters, x, is
not known and so must be inferred from x0;Z 0 and Z . To this end, first Bayes’ theorem is
invoked:
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p xjZ;D0� � ¼ 1
g
p Zjx;D0� �

p xjD0� �
: (16)

The normalization factor is independent of x and, therefore, unimportant here. The training
data, D

0
does not contain information about the patient parameters x of the current patient

to which the data Z belong. Therefore, the last factor is the bare prior p xð Þ for the patient
parameters. Next, the hyper-parameters c of the surrogate function via the marginalization
rule can be introduced:

p Zjx;D0� � ¼ ð
p Zjx;D0; c
� �

p cjx;D0� �
dVc ; (17)

which is to be read as a volume integral over the domain of c. In the second factor, the
patient parameters x of the current patient without the corresponding impedance values do
not contain any information about the hyper-parameters of the surrogate model, i.e.
p cjx;D0ð Þ ¼ p cjD0ð Þ is the posterior of the previous section. Finally, in the first term in the
integral, the information D

0
is redundant, as x and c already contains the required

information for the surrogate function entering the likelihood. Up to this point, the
considerations are still quite general and allow the description of the inaccuracy in
modelling the human body for the impedance calculation. In the remaining part of this
paper, however, it is assumed that the modelling is exact and, consequently, the delta-
distribution for the p cjD0ð Þ is as given in (13). Then the integral in equation (17) simplifies to:

p Zjx;D0� � ¼ p Zjx; ĉð Þ ; (18)

and in turn the sought-for posterior according to (16) becomes

p xjZ;D0� � ¼ 1
g
p Zjx; ĉð Þp xð Þ : (19)

From this quantity, one can infer parameter estimates, function estimates, associated
uncertainties and model probabilities. The generalization to the case that the model
description is not exact is in principle. In that case, however, the integral over the space of
hyper-parameters c has to be evaluated numerically, e.g. by Monte-Carlo sampling. This
concerns equation (17) and all integrals following in the next sections.

3.4 Parameter estimation and its uncertainty
The most probable values for the patient parameters x, the so-called maximum a-posteriori
(MAP) estimate, is the solution of the Nx-dimensional optimization problem
x̂ ¼ argmaxxp xjZ; ĉð Þ. However, there is little to be gained in finding the most probable x
if it is not precisely pin-pointed to a single maximum such that one can neglect everything
else. In most cases, this will not be fulfilled. However, this requirement indeed is fulfilled for
the previous MAP approximation of the coefficients c of the PCE if it leads to the Dirac-delta
distribution. A more reasonable quantity as parameter estimate is the expectation value
along with the variance as a measure for the quadratic uncertainty. The parameter
expectation values are given by:
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hx�i i ¼
ð
x�i � p xjZ;D0� �

dVx �
ð
x�i � p xjZ; ĉð ÞdVx : (20)

The integral is to be understood as volume integral over the domain of x, and the
approximation in equation (13) has been used. According to Table 1, this defines a two-
dimensional integral for modelH (healthy patient model) and a four-dimensional integral for
model S (sick patient model). The uncertainty of this estimate is as follows:

Dxi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2i i � hxii2

q
: (21)

3.5 Model comparison
Bayesian probability theory allows inferring whether or not a patient has an aortic
dissection, based on impedance data Z . To this end we use the probability p M jZ ;D0ð Þ for
M [ {H;S}. Bayes’ theorem gives:

p MjZ ;D0� � / p Z jD0;M
� �

p Mð Þ: (22)

In the last term, the dependence onD
0
is omitted, as these data are irrelevant for the current patient;

they only served to determine the hyper-parameters of the surrogate model. For a complete
specification of the surrogate model, one needs to introduce the patient-specific unknown
parameters x and hyper-parameters c. Along with the delta-approximation in the equation (13) the
marginalization overc simply replaces the informationD

0
by ĉ . Thex- marginalization then yields:

p Z jD0;Mð Þ ¼
ð
p Zjx; ĉ;Mð Þp xjMð ÞdVx : (23)

As outlined earlier, a uniform prior has been used for the patient parameters within the
certain parameter rangesRM , specified in Table 1, i.e.

p xjMð Þ ¼
1

Vol p xjMð Þð Þ if x 2 RM

0 otherwise

8<
: (24)

where Vol p xjMð Þð Þ is the volume of the prior, i.e. the domain spanned by the (hyper-)cube
specified in Table 1. Using the uniform prior, the integral becomes:

p Z jD0;M
� � ¼ 1

Vol p xjMð Þð Þ
ð
RM

p Zjx; ĉ;Mð ÞdVx : (25)

The remaining integral can be considered as likelihood mass. A significant value means that the
model describes the data well. Now the odds-ratio for the two models, which is the ratio of the two
probabilities, can be calculated. Thereby, the unknownnormalization in equation (22) drops out:

p H jZ ;D0ð Þ
p SjZ ;D0ð Þ ¼ p Z jD0;Hð Þ

p Z jD0;Sð Þ �
p Hð Þ
p Sð Þ : (26)
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The first term on the r.h.s. is usually called Bayes factor and the second prior-odds.
When substituting equation (25) into the Bayes factor, the appearing ratio
Vol p xjHð Þð Þ=Vol p xjSð Þð Þ is part of Ockham’s razor and appears naturally. Ockham’s
razor avoids over-fitting and generally favours the less complex of two models. More
details on Ockham’s razor can be found in Sivia and Skilling (2006, Ch.4] (von der
Linden et al., 2014, Ch.3.3,17,27], or (Jaynes, 2003, Ch.8]. The other term that occurs is
the ratio of the likelihood masses. This term favours the most flexible model, as it fits
the data better. One can generally say that the simpler model wins if both models
describe the data equally well. In contrast, the more complex model is more probable if
it describes the data much better. In the following numerical analysis, both models are a
priori chosen to be equally probable, i.e. the prior p Mð Þ ¼ 1

2, and thus the prior odds
ratio p Hð Þ=p Sð Þ does not influence the outcome.

4. Results and discussion
The method is tested with artificial data. The integrals found in Sections 3-D to 3-E are
analytically intractable and therefore solved numerically with the Markov Chain Monte
Carlo method, particularly the Metropolis-Hastings algorithm (Brooks et al., 2011, Ch.1] (von
der Linden et al., 2014, Ch.30.3],. The burn-in time was 10%, convergence and auto-
correlations have been verified.

Figure 3 depicts the result of the Bayesian inference with the conventional tetra-polar
spot electrode ICG (one pair of injection electrodes and one pair of measurement sensors) and
the proposed multi-sensors ICG as described in Section 3. For this purpose, artificial data Z
have been generated for a sick patient with specific patient parameters
RTL ¼ 1:65cm;RFL ¼ 0:9cm;aFL ¼ 3:275rad;H ¼ 0:45ð Þ, to which 4 different Gaussian

Figure 3.
Histogram of the
logarithmic odds
ratio for 1000
independent tests on
a generated signal
from a specific sick
patient superimposed
with 4 different noise
levels with multi-
sensors ICG inference
(top) and
conventional ICG
inference (bottom)
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noise levels have been added. Then, the logarithm of the odds-ratio (24) has been computed.
This has been repeated 1000 times for each noise level independently. Due to the definition
of the odds-ratio (26), negative values of the logarithmic odds-ratio correspond to a correct
classification because the data are generated for a sick patient. The green lines in Figure 3
have denoted this. It is clear that the results from multi-sensors inference are more decisive
compared to the conventional method. In particular, the multi-sensors inference is more
robust to higher noise levels.

Figure 4 shows a comparison between the reliability of the conventional ICG method
and multi-sensors ICG in detecting the source of a random noisy signal. For this
purpose, 100 tests were performed for each noise level. In more detail, true patient
parameters x have been chosen randomly, and a data set is generated according to the
surrogate model and superimposed with noise. This is repeated 50 times for the healthy
patient and 50 times for the sick patient (according to the chosen prior-odds). It is
evident that the proposed Bayesian classification of multi-sensors ICG is more reliable
than that of conventional type, although the uncertainty of the classification increases
at higher noise levels. In practice, the prior-odds is not 1 but given by the ratio of the
number of healthy people to the number of people with AD in the population (gender,
age, acute symptoms, etc.) under consideration. A typical value for aortic dissection
would be 105 based on its one-year incidence, meaning that the histogram in Figure 3
would be shifted to the right by 5 on the logarithmic scale of the odds ratio. Given that
the distributions here span over a much larger scale of hundreds or thousands in the log
odds ratio, this shift is negligible. It also means that the Bayes factor (the data term)
here outweighs the prior odds by far. Nevertheless, it increases slightly the number of
false negatives as well as false positives in Figure 4.

Figure 5 shows a Bayesian parameter estimation based on multi-sensors ICG data of
a sick patient, with specific patient parameters, as mentioned before, for 4 different
noise levels. It is obvious that, at higher noise levels, the estimated values for the most
sensitive parameters shaping the ICG signal (Badeli et al., 2020), such as the radius of
the true lumen (RTL) and the radius of the false lumen (RFL), slightly differ from the true
values. However, they are still within the statistical uncertainty.

Finally, the relationship of this work with Ranftl et al. (2019; Ranftl et al. (2019) will
be discussed. The physical model used in the mentioned paper is somehow similar,
however in this work, apart from the aorta, the surrounding tissues with their actual
material properties have been modelled in the simulation domain. Also,

Figure 4.
Comparison between
the reliability of the
conventional ICG
(blue) andmulti-

sensors ICG (green) to
classify the source of

100 randomly
generated noisy

signals either from
sick or healthy

patients
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interdependence between the blood conductivity changes in the true lumen and the size
of the false lumen has been considered, as in Badeli et al. (2020). Furthermore, in Ranftl
et al. (2019) and Ranftl et al. (2019), a tetra-polar spot electrode configuration (one pair of
injectors and one pair of sensors) for measuring the impedance is used while in this
work, multiple injectors and multiple sensors have been placed on the thorax’s surface
which shows a significant improvement for the diagnosis purposes (Ranftl et al., 2019;
Ranftl et al., 2019). focuses on the methodology of surrogate modelling and forward
propagation of uncertainty, while this work concerns the inverse problem, particularly
the model selection and parameter estimation (Ranftl et al., 2019; Ranftl et al., 2019).
uses multi-fidelity data, while this work uses multi-sensor data, with the essential
difference being that the sources cannot a priori be ordered according to their fidelity.
Note that here Polynomial Chaos Expansions are used as surrogate model, while (Ranftl
et al., 2019) uses a simple linear regression model and (Ranftl et al., 2019) a generalized
auto-regressive sequence of Gaussian processes.

5. Conclusion
A 3D numerical simulation model is developed in this work to detect aortic dissection in a
human body. Also, it has been investigated whether the multi-sensors ICG data is
advantageous. Bayesian probability theory is invoked to estimate the patient parameters
entering the simulation model and for the classification of whether or not a patient suffers
from AD. The approach is benchmarked based on artificial data for different noise levels of
the sensors. The Bayesian classification/model comparisons show that the proposed multi-
sensors ICG is more reliable than conventional tetra-polar spot electrode ICG. In addition,
the values of the patient parameters are determined, which revealed that, in particular, the
sizes of the true and false lumen can be reconstructed surprisingly accurately from the ICG
data. All in all, Bayesian probability theory allows a rigorous quantification of all
uncertainties in order to draw reliable conclusions for the medical treatment of aortic
dissection.

Figure 5.
Parameter estimation
by applyingmulti-
sensors Bayesian
inference on a
generated signal from
a specific sick patient
superimposed with
with 4 different noise
levels
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For future works, clinical trials will be done in cooperation with industrial and clinical
partners in order to verify the proposed multi-sensors approach for detecting AD. Also, the
uncertainties of the surrogate model and noise terms will be included in the Bayesian
inference. Furthermore, the model will be extended to consider thrombosis in the false lumen
and its impact on the impedance cardiogram.
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Appendix 1
Maximization of the likelihood concerning c in (14), in order to determine c, is equivalent to
minimization of the exponent of the product in (12). For this exponent x , we find
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If the inverse of MTM exists, the solution is (15).

Appendix 2
Signal Estimation and its Uncertainty

As a by-product, one finds the estimate for the reconstructed true (de-noised) signal and its
uncertainty. For simplicity, the subscript l = (i,j,k) is dropped here. Then the �-th moments are

hf �i ¼
ð
f �p f jD;D0� �

dVf

¼
ð
f �p f jx; cð Þp xjD;D0� �

dVf dVx

�
ð

f x; ĉð ÞÞ�p xjĉ;D0� �
dVx

� (27)

where it has been used in the second line that, given input x and ĉ , the function value f is determined,
i.e. there is a Dirac-delta in f. The signal estimate and its uncertainty are then given by � = 1,2 and

Df ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hf 2i � hf i2

q
. Note that the approximation in (13) has been used analogous to (20). Figure A1

shows the reconstructed signal from the case described in Section III-D. The reconstructed signal
conforms with the true signal even for higher noise levels. It is worth mentioning that the uncertainty
band gets wider by increasing the noise levels, but since the uncertainty band is in a much smaller
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range (10– 3) than the signal, it is not visible in Figure A1 and does not have a noticeable effect on the
reconstructed signal. The correct signal reconstruction underlines the validity of our model and may
improve estimates of, e.g. the stroke volume.
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