Search results

1 – 10 of 45
Open Access
Article
Publication date: 3 October 2019

Sharmin Majumder, Tanasri Sihabut and Md Golam Saroar

In order to reduce the health impacts of air pollution effectively, developing strategies that involves individual or community level is crucial. The purpose of this paper is to…

2938

Abstract

Purpose

In order to reduce the health impacts of air pollution effectively, developing strategies that involves individual or community level is crucial. The purpose of this paper is to assess people’s protective practices for inhalable particulate matter and its significant determinants such as general characteristics, knowledge and attitude among residents of an urban residential area, Dhaka, Bangladesh.

Design/methodology/approach

This cross-sectional study was conducted by systematic random sampling. A total of 424 people, who lived in that area for not less than two years before the survey, were interviewed using a structured questionnaire. χ2 and Fisher’s exact test were used to analyze the data.

Findings

Only a small proportion of respondents had high practice level. In addition, a little more than half has high level of knowledge about inhalable particulate matter, its adverse health effects and protective practices and almost 70 percent had high level of attitude toward air pollution. The protective practices for small inhalable particulate matter was significantly associated with age, educational level, occupation, knowledge and attitude toward small inhalable particulate matter, its adverse health effects and protective measures.

Originality/value

A good level of knowledge about the prevailing air pollution and related health risks can be crucial to develop more focused attempt at changing the current situation with public participation. The environmental experts and health volunteer should disseminate precise and adequate information about long-term health hazards of particulate matter and measures of exposure prevention to improve the protective practices.

Details

Journal of Health Research, vol. 33 no. 6
Type: Research Article
ISSN: 2586-940X

Keywords

Open Access
Article
Publication date: 15 December 2023

Francis Olawale Abulude, Domenico Suriano, Samuel Dare Oluwagbayide, Akinyinka Akinnusotu, Ifeoluwa Ayodeji Abulude and Emmanuel Awogbindin

This study aimed to characterize the concentrations of indoor pollutants (such as carbon dioxide (CO2), ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2), as well as…

Abstract

Purpose

This study aimed to characterize the concentrations of indoor pollutants (such as carbon dioxide (CO2), ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2), as well as particulate matter (PM) (PM1, PM2.5 and PM10) in Akure, Nigeria, as well as the relationship between the parameters’ concentrations.

Design/methodology/approach

The evaluation, which lasted four months, used a low-cost air sensor that was positioned two meters above the ground. All sensor procedures were correctly carried out.

Findings

CO2 (430.34 ppm), NO2 (93.31 ppb), O3 (19.94 ppb), SO2 (40.87 ppb), PM1 (29.31 µg/m3), PM2.5 (43.56 µg/m3), PM10 (50.70 µg/m3), temperature (32.4°C) and relative humidity (50.53%) were the average values obtained. The Pearson correlation depicted the relationships between the pollutants and weather factors. With the exception of April, which had significant SO2 (18%) and low PM10 (49%) contributions, NO2 and PM10 were the most common pollutants in all of the months. The mean air quality index (AQI) for NO2 indicated that the AQI was “moderate” (51–100). In contrast to SO2, whose AQI ranged from “moderate” to “very unhealthy,” O3's AQI ranged from “good” (50) to “unhealthy” (151–200). Since PM1, PM2.5 and PM10 made up the majority of PC1’s contribution, both PM2.5 and PM10 were deemed “hazardous.”

Practical implications

The practical implication of indoor air pollution is long-term health effects, including heart disease, lung cancer and respiratory diseases such as emphysema. Indoor air pollution can also cause long-term damage to people’s nerves, brain, kidneys, liver and other organs.

Originality/value

Lack of literature in terms of indoor air quality (IAQ) in Akure, Ondo State. With this work, the information obtained will assist all stakeholders in policy formulation and implementation. Again, the low-cost sensor used is new to this part of the world.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 30 April 2017

Young-Tae Chang, Eunbee Kim, Ahhyun Jo and Hyosoo Park

Ports create harmful effects on their adjacent population because ships discharge noxious gases like SOX, NOX, and particulate matter (PM). To tackle this problem, some ports…

Abstract

Ports create harmful effects on their adjacent population because ships discharge noxious gases like SOX, NOX, and particulate matter (PM). To tackle this problem, some ports started to control emission through regulations such as Emission Control Areas (ECA) and Reduced Speed Zone (RSZ). This paper estimates the social cost of ship emission and eco-efficiency at the Port of Incheon (POI). We further examine how the ECA and RSZ designation can reduce the social cost. The estimation is based on the activity-based approach, where ship type, engine, and movement are used to measure fuel consumption and then emission. Results suggest that the social cost of ship emission at the POI amounts to $90,805,478. The eco-efficiency of the POI, compared to the one at the Port of Las Palmas in another study, is substantially better. Under RSZ, the corresponding emission abatement values are $4,485,308, $2,642,009 and $21,932,435 from SO2, NOX and PM reduction, respectively. If 1.0% and 0.1% sulfur fuel are used complying with rules of the ECA, the social cost savings amount to $8,174,947 and $12,868,842 from SO2 reduction.

Details

Journal of International Logistics and Trade, vol. 15 no. 1
Type: Research Article
ISSN: 1738-2122

Keywords

Open Access
Article
Publication date: 31 December 2007

Minyoung Park, Amelia Regan and Choon-Heon Yang

This paper presents a case study examining the emissions impacts of a modal shift from on-road trucks to rail for goods movement through the Southern California ports region, one…

Abstract

This paper presents a case study examining the emissions impacts of a modal shift from on-road trucks to rail for goods movement through the Southern California ports region, one of the severest non-attainment areas in terms of national air quality standards. Recent completion of the Alameda Corridor, a 20-mile rail expressway that connects the Ports of Long Beach and Los Angeles with rail mainlines near downtown Los Angeles, provides substantial reserve capacity for port traffic to be diverted from the severely congested road network to the rail line. On-road vehicles emissions were estimated using California mobile-source emissions model, ‘EMFAC’ that incorporates a set of emissions factors for each vehicle type and an estimate of vehicle activity. These emissions were then compared with the emissions generated from trains increased to carry freight volume diverted from truck traffic. On the basis of year 2000 traffic level, it was estimated that for a 20 percent modal shift of port traffic, mobile-source emissions can be reduced up to 0.86 tons for nitrogen oxides and 16 kg for particulate matter per day. The analysis results indicate that encouraging the modal shift for port-related freight traffic should be an integral part of overall air quality improvement initiatives for the study area.

Details

Journal of International Logistics and Trade, vol. 5 no. 2
Type: Research Article
ISSN: 1738-2122

Keywords

Content available
Book part
Publication date: 18 October 2019

Stefano Salata

Abstract

Details

Ecologically-compatible Urban Planning
Type: Book
ISBN: 978-1-78973-783-7

Content available
Book part
Publication date: 18 October 2019

Stefano Salata

Abstract

Details

Ecologically-compatible Urban Planning
Type: Book
ISBN: 978-1-78973-783-7

Content available
Book part
Publication date: 6 February 2023

Abstract

Details

The Impact of Environmental Emissions and Aggregate Economic Activity on Industry: Theoretical and Empirical Perspectives
Type: Book
ISBN: 978-1-80382-577-9

Content available
Book part
Publication date: 17 October 2022

Abstract

Details

Electrifying Mobility: Realising a Sustainable Future for the Car
Type: Book
ISBN: 978-1-83982-634-4

Content available
Book part
Publication date: 26 April 2022

Andreas Herrmann and Johann Jungwirth

Abstract

Details

Inventing Mobility for All: Mastering Mobility-as-a-Service with Self-Driving Vehicles
Type: Book
ISBN: 978-1-80043-176-8

Content available
Article
Publication date: 4 January 2023

Shilpa Sonawani and Kailas Patil

Indoor air quality monitoring is extremely important in urban, industrial areas. Considering the devastating effect of declining quality of air in major part of the countries like…

Abstract

Purpose

Indoor air quality monitoring is extremely important in urban, industrial areas. Considering the devastating effect of declining quality of air in major part of the countries like India and China, it is highly recommended to monitor the quality of air which can help people with respiratory diseases, children and elderly people to take necessary precautions and stay safe at their homes. The purpose of this study is to detect air quality and perform predictions which could be part of smart home automation with the use of newer technology.

Design/methodology/approach

This study proposes an Internet-of-Things (IoT)-based air quality measurement, warning and prediction system for ambient assisted living. The proposed ambient assisted living system consists of low-cost air quality sensors and ESP32 controller with new generation embedded system architecture. It can detect Indoor Air Quality parameters like CO, PM2.5, NO2, O3, NH3, temperature, pressure, humidity, etc. The low cost sensor data are calibrated using machine learning techniques for performance improvement. The system has a novel prediction model, multiheaded convolutional neural networks-gated recurrent unit which can detect next hour pollution concentration. The model uses a transfer learning (TL) approach for prediction when the system is new and less data available for prediction. Any neighboring site data can be used to transfer knowledge for early predictions for the new system. It can have a mobile-based application which can send warning notifications to users if the Indoor Air Quality parameters exceed the specified threshold values. This is all required to take necessary measures against bad air quality.

Findings

The IoT-based system has implemented the TL framework, and the results of this study showed that the system works efficiently with performance improvement of 55.42% in RMSE scores for prediction at new target system with insufficient data.

Originality/value

This study demonstrates the implementation of an IoT system which uses low-cost sensors and deep learning model for predicting pollution concentration. The system is tackling the issues of the low-cost sensors for better performance. The novel approach of pretrained models and TL work very well at the new system having data insufficiency issues. This study contributes significantly with the usage of low-cost sensors, open-source advanced technology and performance improvement in prediction ability at new systems. Experimental results and findings are disclosed in this study. This will help install multiple new cost-effective monitoring stations in smart city for pollution forecasting.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of 45