Index

Adaptation-led-mitigation, 200	Analytical process, 95
Agenda 21, 231, 250	Annual Survey of Industries, 344
Aggregative methodology, 233	Artificial intelligence (AI), 69
Agri-hydroscape, changes in, 203–205	Asian countries, 94–95
Agricultural practices, 196	Asian economies, 95
Agricultural production, climate	Augmented Dickey–Fuller test (ADF
change on, 196	test), 158, 279, 318–319
Agricultural sector, 253	Automobiles, 332
Agricultural systems, changing	Automobiles, 332
climate and, 199–200	Bar diagram, 186
Agriculture, 197	Barilla Center for Food & Nutrition
input management, 200–208	(BCFN), 84
sector, 199	Baseline model, 114–118
sustainability in fertiliser	empirical calibration, 119–120
consumption in, 205–208	impact of increase in stringency
Agro-ecosystems, 200	of environmental norms,
Agronomic soil conservation	118–119
strategies, 201	impact of technological
Air emissions, nature and seasonal	advancement in production
trend of, 337–339	of clean energy, 119
Air pollutants, 336	impact of technological progress
Air pollution, 184, 216, 332	towards fuel efficiency, 119
control, 277	Basic Services for Urban Poor
data source, 185–188	(BSUP), 294
description of study area, 335-336	Bengal Smoke Nuisance Act, The,
higher levels of, 185	1905, 280
of Kolkata, 334–335	Bhagirathi–Hooghly River systems, 43
major causes of seasonal	Bidirectional Causality, 108
fluctuation, 340	Biodiversity loss, 293
methodology, 185-187, 336-340	Bombay Smoke Nuisance Act, The,
relevancy in national and	1905, 280
international platform,	Bureaucratic system, 40
333–334	
result of analysis, 188–192	Capacity utilisation (CU), 314
survey of literature, 184–185	method for measuring, 317–318
Air quality crisis, 332	Capital controls, 171
Air Quality Index (AQI), 46, 141, 278	Capital deflator, 161
growth rate of, 285	Capital input, 160
of Mumbai, India, statistics of, 282	Capital intensity (CAPIN), 347, 352
Akaike information criterion (AIC),	Capital-wise data, 301
133, 176	Capital–labour ratio (K/L), 186–187

Carbon Capture and Storage (CCS),	Carbon dioxide emission to per unit
12	of energy used (CEU),
Carbon Capture/Utilization and	127
Storage (CCS/CCUS), 12	Carbon dioxide emissions (CO_2E),
Carbon capturing smart cities, 20	2, 4, 12, 14, 108, 129,
Carbon capturing smart construction	175, 344–345 (see also
industry model, 15	Environmental emission)
construction phase and carbon	Carbon dioxide removal technologies
capturing smart supply	(CDR technologies), 12
chain, 18–19	Carbon efficiency of energy use
and construction project	(CEU), 4
management, 13–16	Carbon emission (CE), 3, 69, 72, 130,
design phase, 16–18	170
recommendations, 19–20	role of nuclear energy to reduce
Carbon capturing smart supply chain,	carbon emission problem,
construction phase and,	72
18–19	Carbon monoxide (CO), 334
Carbon capturing smart technologies,	Carbon neutrality, 16
19	Carbon prices level, 20
Carbon capturing technologies, 13,	Casual enterprises, 347
15–16	Cement production, 17
Carbon dioxide (CO ₂), 1, 94, 166, 170	Central Statistical Organization, 159
analysis of results, $100-108$	Central Statistical Organization, 137 Centre for Monitoring Indian
Breusch–Godfrey Serial	Economy Pvt. Ltd.
Correlation LM Test, 105	(CMIE), 344
definition of variables and model,	Chemical and chemical products,
98–100	262–263, 267–269
first generation panel unit-root	Chemical industry, 263
tests, 102	Chemical processes, 269
individual cross-section	Chi-square test, 133
cointegration results, 104	Chow Test, 281
Johansen Fisher Panel	Cities, 17
Cointegration Test, 103	City-wise data, 301
methodology, 95–98	Civil society, 257
Pairwise Granger Causality Tests,	Classical theory model, 251
106–107	Clean energy, 112, 115
panel cross-section	per capita, 117
heteroscadasticity LR Test,	impact of technological
104	advancement in production
Panel EGLS, 105	of, 119
Pedroni residual cointegration	Clean technology, 26
test and Kao residual	Climate change, 80, 82, 197, 199,
cointegration test, 102	292–293
review of existing literature, 95	on agricultural production, 196
summary of literature review,	impacts of climate change on
96–97	Jordan, 81–82

Climate-smart agriculture in India	Corruption, 100
basics of, 197–198	Cost function approach
changing climate and agricultural	brief review of literature, 314–315
systems, 199–200	data sources and methodology,
input management in agriculture,	316–320
200	objectives, 315
institutions for, 208–209	Cost of pollution, 118
sustainability in fertiliser consumption	COVID-19
in agriculture, 205–208	data, 278–279
sustainable water management for,	growth rate of AQI, 285
200–205	implication, 285–287
Clinker production process, 18	lockdown, 278
CO ₂ EI, 345	methodology, 279-281
determinants, 346–347, 351–352	methods, 278
estimation, 346	policy implications, 287–288
at industry level, 350–351	results, 281–282
Coal, 68, 126	stationarity checking, 279–280
Coefficient of variation (CVt), 220	statistics of AQI of Mumbai,
Cointegration test, 319	India, 282
Component bar chart, 186	structural break and growth rate,
Composite indicator, 232	280–281
Computable General Equilibrium	structural break or switching
(CGE), 27	points, 283–284
Constant returns to scale (CRS), 57,	unit root test, 282–283
264	vaccines, 156
Construction industry, 13, 18	Cultural globalisation (CULG), 174
policies, 19	CUSUM Of Squares Test, 283
Construction phase and carbon	CUSUM tests, 281
capturing smart supply	CUSUMQ tests, 281
chain, 18–19	Cyber technologies, 208
Construction project management,	
carbon capturing smart	Data, 278–279
construction industry and,	of pollutants, 188
13–16	sets, 219
Consumer Price Index, 188	source, 129–130s, 316
Consumption–emission dynamics, 31	Data Envelopment Analysis (DEA),
Contingent Valuation Method	6, 158, 263
(CVM), 4, 142	Database, 316
data base and survey design, 144	Decreasing returns to scale (DRS), 268
econometric specification and	Department of Environment (DoE), 46
results, 144–151	Department of International
methodology, 145–148	Development (DFID), 293
objectives and hypothesis of study,	Department of Statistics (DoS), 85
143–144	Design optimization, 17
results, 148–151	Design Phase, 16–18
Convergence test, 119	Design team, 16–17

Determinant analysis, 187	Empirical analysis, 267
Developed countries (DCs), 112	Empirical calibration model, 119–120
Developing countries, 170	Endogenized green capital, 3
Development and environment,	Endogenous growth theories, 251
politics of, 43–45	Energy, 72, 115, 126, 345 (see also
Development initiatives, 43	Nuclear energy)
Development politics, 41	energy-efficient technologies, 172
Dhaka Metrorail, 47	investments, 72
Direct Air Capture (DAC), 12	systems, 83
Disaster risk, perspectives on, 46–48	Energy consumption (ECON), 99,
Distributive justice, 112	108, 113
Divergence test, 119	and pollution, 166–167
Domestic capital, 61	Energy intensity (EI), 344
Domestic pharmaceutical industry, 156	and CO, EI at industry level,
Dynamic panel equation, 175	350–351
Dynamics, relationship between per	database and methodology, 345-347
capita output growth rate,	method for measuring, 318
emission and, 33	results, 347–352
	Energy resources, 67–68
Eco-friendly development, 250	in Jordan, 85
Eco-industrial zones, 18	Energy Statistics, 159
Economic crises, 266	Energy use (ENGU), 130, 175
Economic development, 40, 141	fossil fuels as source of energy and
Economic globalisation, 171, 174	impact on environment,
Economic growth, 1, 17, 26, 108, 113,	126–127
126, 170, 173, 216, 252	indicator, 129
and development, 112	lag selection criteria test, 132–133
experience of Bangladesh, 252–255	literature review, 127–129
experience of Maldives, 255–257	motivation of study, 129
preventing environmental	panel cointegration test, 134
degradation and solving	panel unit root test, 131–132
water scarcity problem of	source of data, 129–130
Jordan to sustain, 84–85	South Asian nations and, 127
theoretical outline of, 251	theoretical concept, 130–131
Economic scale change (SC), 6, 261	VECM estimation and Wald test
Economic system, 237	134–135
Economies mechanisms, 42	Enterprises, 346–347
Economists, 126	Environment, 40
Education, 148	fossil fuels as source of energy and
Emerging countries, 216	impact on, 126–127
Emissions, 113–114	politics of development and, 43–45
intensity, 196	Environment regulations, 218
level, 144	Environmental air pollution, 332
reduction, 20	Environmental degradation of
relationship between per capita	Jordan to sustain industrial
output growth rate, dynamics and emission 33	and economic growth,
dynamics and emission, 33	preventing, 84–85

Environmental emission, 112, 15/	Farakka Barrage project, 43
baseline model, 114–120	Fertiliser consumption in agriculture,
basic model, 56-58	sustainability in, 205–208
literature review, 112–114	Financial capital (FC), 297
variant of basic model, 58-61	Financial development (FDEV), 100,
variant of first variant, 61–65	108
Environmental governance, 251–252	Financial globalisation (FING), 174
in Bangladesh, 254	First generation panel unit-root tests,
experience of Bangladesh, 252–255	98
experience of Maldives, 255–257	Fisher combined test, 134
in Maldives, 256	Fisher-type test, 98
theoretical outline of, 251	Fixed effect model, 187, 217
Environmental impact assessment	Fluctuation, 332
(EIA), 40	Food and Agriculture Organization
Environmental Kuznets Curve (EKC),	(FAO), 197
127–128, 141, 172, 250	Food security, 196–197, 201
hypothesis for ASEAN countries,	Foreign capital, 61
95	Foreign direct investments (FDI), 69,
Environmental norms, impact of	156, 216
increase in stringency of,	inflows, 218
118–119	trend analysis of, 221–223
	Fossil fuels, 12
Environmental pollution, 82, 254 Environmental problems, 70	fossil fuel-based energy resources,
Environmental Protection and	68
Preservation Act, 256	
*	impact of rise in price of, 35–36
Environmental regulations, 216–217,	as source of energy and impact on
223	environment, 126–127
Environmental stresses, 230	4-digit manufacturing industries, 269
Environmental sustainability, 306	274
Environmental systems, 43, 230	Fuel consumption, 167
Environmentally sound technology	Fully modified ordinary least square
(EST), 54, 347	estimation (FMOLS), 103
Equilibrium analysis, 55	C
Estimated Generalised Least Square	Gas fuels, 129–130
(EGLS), 4	GDP efficiency of energy use (GEU)
Euler equation, 28	4, 127
Eurofound, 232	General equilibrium, 55
Ex situ techniques, 201	Generalised Method of Moments
Expanding growth status (EXPG),	(GMM), 5, 175
347	Global warming, 94, 141, 199, 293
F	Globalisation, 54 <i>n</i> 1, 67, 112, 169–170
F-statistic, 224	data and methodology, 174–175
F-test, 162	empirical findings, 176–178
Factor accumulation, 315	index, 172
Factor endowment hypothesis (FEH),	literature survey, 172–174
54	process, 170

Governance	Human health, 68
concern about, 45-46	Hydrogen (H), 68
data sources, 219	
factors, 218	Im, Pesaran, and Shin test (IPS test),
indicators, 219	98, 131
Government of India, 159	In situ techniques, 201
Gradient of locus of steady-state	Independent variables, 99
conditions, 38	India, 344
Granger causality test, 319–320	basics of, 197–198
findings, 326–327	changing climate and agricultural
Great Depression, The, 27	systems, 199–200
Green and sustainable total factor	city development plans in, 294–297
productivity growth, 12	input management in agriculture,
Green capital, 3, 54, 61–62	200
and environment, 54	institutions for, 208–209
Green economy, 237	sustainability in fertiliser
Green nuclear energy, 69	consumption in agriculture
Green technology, 3, 54, 143	205–208
basic model, 56-58	sustainable water management for,
variant of basic model, 58-61	200–205
variant of first variant, 61-65	Indian agriculture sector, 196
Green-technology, 112	Indian Boilers Act, The, 1923, 280
Greenhouse gas emission (GHG	Indian Council of Agricultural
emission), 12, 68, 94, 113,	Research (ICAR), 208
196, 344–345	Indian drugs, 156
Gross domestic product (GDP), 129,	Indian Explosive Act, The, 1884, 280
250	Indian manufacturing
growth, 108	industry, 185–186
per capita, 99	sector, 167, 187
Gross fixed capital stock (GFCS), 160	Indian Penal Code, 280
Gross value added (GVA), 160	Indian Petroleum Act, The, 1934, 280
Growth, 116	Indian Pharmaceutical Industry, 156
of Indian unorganised manufacturing	database, 159
sector, 347–349	energy consumption and pollution
rate of TFP, 316	166–167
	literature review, 157–159
Hannan-Quinn information criterion	measurement of output and inputs
(HQIC), 133	160–161
Harold Hotelling's approach, 29	measurement of TFPG from trans-
Hausman's specification test, 190	log production function,
Heavy transportation in metropolitan	161–162
cities, 335	methodology, 159-160
Heavy-polluting businesses, 170	research gap and motivation of
Heckscher-Ohlin-Vanek (HOV), 54	study, 159–161
Household, 148	results, 162–166
Human capital (HC), 114, 297, 302	Indian Subcontinent, 43

Industrial growth, preventing	Jordan
environmental degradation	impacts of climate change on, 81-82
and solving water scarcity	to sustain industrial and economic
problem of Jordan to	growth, preventing
sustain, 84–85	environmental degradation
Industrial Revolution (IR), 67	and solving water scarcity
Industrial sector, 84	problem of, 84–85
Industrialisation (INDS), 100, 105,	water resources, political and
108, 254	economic aspects of, 82–84
in South Asian, 129	Jordan Strategy Forum (JSF), 84
Industries, 253	
Industry dummies (ID), 347	Kao ADF-Statistic test, 134
Infinitesimal changes, 56	Kao residual cointegration test, 102
Influence analysis (IA), 235	Kapti Dam, 43
Informal sector, 55	Kendall Rank Correlation
Information and Communication	Coefficients, 242
Technologies (ICTs), 85	Keynesian demand-side model, 251
Informational globalisation (INFG),	KOF economic globalisation index, 172
174	Kolkata, 332
Innovation, 20	air pollution, 334–335
Integrated Housing and Slum	motor vehicles in, 335
Development Programme	Kyoto protocol, 287
(IHSDP), 294	
Intended Nationally Determined	Labour, 266
Contributions (INDC), 344	input, 160
International competitiveness in	productivity, 188, 192
South Asian, 129	Lag selection criteria test, 132–133
International Financial Statistics, 219	Lagrange Multiplier test, 351
International green capital immobility	Large-scale membrane separation, 13
basic model, 56–58	LEMA Company, 85
sectors, 63–65	Levin, Lin and Chu's test (LLC test),
variant of basic model, 58-61	98, 131
variant of first variant, 61-65	Life Cycle Cost analysis, 16
International Monetary Fund, 219	Likelihood ratio test (LR test), 132
International trade	Line diagram, 336
basic model, 56–58	Linear programming technique (LP
variant of basic model, 58-61	technique), 265
variant of first variant, 61-65	Liquid, 129–130
Interpersonal globalisation (INTG), 174	Location (LOCN), 347
Iterative design process, 16	Lockdown, 287
	Lower production cost, 217
Japan's Fukushima Daiichi Nuclear	
Power Plant, 45	Manufacturing sector, 156
Johansen cointegration test, 321, 326	Market-based strategy, 230
Johansen Fisher panel cointegration	Matarbari coal-based power plant, 40
test, 103	Matarbari power plant, 40, 47

Maximum-likelihood estimates	Non-renewable energy sources, 126
(MLE), 267	Non-stationary time series, 131
Mazziotta & Pareto Index, 232	Non-stationary variables, 319
Membrane separation, 13	Normalisation, 232
Mercantilism model, 251	Nuclear energy, 68
Micro, Small and Medium	investments, 69
Enterprises (MSMEs), 353	role of nuclear energy to reduce
Middle East and North Africa	carbon emission problem,
(MENA), 80, 218	72
Million cubic meter (MCM), 83	theoretical background, 69-71
Minamata disease, 44	Nuclear energy power plants (NPP),
Mobilisation, 237	69
Model, definition of, 98–100	
Modelling pollution, 1	OECD countries, 69
Motor Vehicles Act, The, 1939, 280	Oil, 68
Motor vehicles in Kolkata, 335	Optimal growth-theoretic analysis
MPI index, 5, 234–236	literature review, 26–29
Multinational corporations (MNCs),	model, 29–33
253	relationship between per capita
	output growth rate and
National Adaptation Fund for	emission and dynamics, 33
Climate Change (NAFCC),	impact of rise in price of fossil
197	fuel, 35–36
National and international platform,	impact of rise in η , 33–35
relevancy of air pollution	Ordinary least squares (OLS),
in, 333–334	161–162
National Annual Statistics (NAS), 159	Organisations, 295
National Environment Engineering	Organised manufacturing enterprises,
Research Institute	344–345
(NEERI), 279	Oriental Gas Company Act, The, 1857
National Industrial Classification	Own account enterprises (OAEs), 347
(NIC), 345	
National Initiative on Climate	Padma Multipurpose Bridge, 47
Resilient Agriculture	Panel cointegration test, 134
(NICRA), 208	Panel data
National political system, 40	estimation method, 187
National Sample Survey Organisation	regression model, 346
(NSSO), 345	results, 223–225
Natural capital (NC), 297	Panel model, 190
Natural gas, 68, 126	Panel regression estimation, 190
Natural resources, 309	Panel unit root test, 131–132
Nature of operation (NOPN), 346–347	Particulate matter (PM), 184, 186–187
Nitrogen (N), 205	Patent (Amendment) Act (2005), 156
Nitrogen dioxide (NO ₂), 184, 186	Payra Deep Sea Port, 47
variation in, 338–339	Pedroni residual cointegration test, 102
Non-renewable energy resource, 115	Pedroni test, 134

Per capita capital stock, 116	Product Patent Act, 157
Per capita GDP (PCGD), 175	Productivity, 314
Per capita output growth rate,	growth, 315
relationship between	Protest bidders, 146
emission, dynamics and, 33	Public bad, 30
Perennial enterprises, 346–347	
Perpetual inventory method (PIM),	Quantitative analysis, 5
160	Quantitative data, 95
Persistent organic pollutants (POPs),	
280, 284	Rainwater harvesting techniques, 200
Personal discounting, 28	Rampal power plant project, 47
Petroleum, 126	Ramsey equation, 29
Pharmaceutical industry, 156	Ramsey-Cass-Koopmans Framework
Phillips–Perron test (PP), 162, 279,	(R-C-K Framework), 3
318–319	Random effect model, 187, 190
Phosphorous (P), 205	Random utility model (RUM), 147
Photochemical products, 269	Rapid population growth in South
Photovoltaic power plant (PVPP), 85	Asian, 129
Physical capital (PC), 295, 297	Rastriya Krishi Vikas Yojona
Poirier's Spline function approach,	(RKVY), 203
6, 285	RBI Bulletin, 159
Policy, 295	Real gross value added (RGVA), 160
Policy-makers, 294	Real wage (RW), 186–188
Political globalisation (POLG), 174	Redistribution, 239
Political strategy, 45	Reduce, reuse, recycle and upcycle
Politics of development and	(3R+U), 13
environment, 43–45	of CO ₂ emissions, 14
Pollutants, 188, 332	Regime change concept, 3, 56
Pollution, 1, 28, 184, 249, 293	Respiratory particulate matters
control, 219	(RPM), 332
energy consumption and, 166-167	variation in, 338
free technology, 3	Restricted F test, 351
policy recommendations, 258	Reuse, Recycle + Upcycle (2R+U), 15
research questions, data, and	Rice intensification system, 201
methodology, 251	Road vehicles, 332
result of study, 257–258	
theoretical outline of economic	Saddle point, 31
growth and environmental	Scale effects (SC), 274
governance, 251–252	Schwarz information criterion (SIC),
Pollution Haven Hypothesis (PHH),	133
53, 170	Sea creatures, 44
Pooling proxy equation, 131	Seasonal enterprises, 346–347
Potassium (K), 205	Seasonal trend, 336
Principle of Optimality, 28	Sector specificity of green capital, 57
Private good, 30	Seemingly unrelated regression
Private sector, 85	(SUR), 187

Self-helf Group (SHGs), 202	Stationarity test, 318–319
Single-bounded DC bidding process,	Statistical analysis, 241
147	Stochastic Frontier Approach (SFA),
Single-equation methods, 98	6, 263
Single-factor productivity, 314	Structural shift, 288
Smart city, 301, 306	Sulphur dioxide, 186
approach, 295	Sulphur dioxide (SO ₂) 184
web, 309	variation in, 338
Smart City Mission	Supply chain, 15, 18–19
calculation and descriptive	Suspected particulate matters (SPM),
analysis, 301–306	332
city development plans in India,	variation in, 337–338
294–297	Sustainability, 41, 129, 196, 231, 306
environmental sustainability, 306	in fertiliser consumption in
evaluation of, 297	agriculture, 205–208
holistic framework, 306–310	thoughts, 41–43
methodology, 297-301	Sustainable agricultural
Smart technologies, 13	intensification, 199
integration of, 15	Sustainable development, 5, 26, 41,
Social capital (SC), 297	112, 229, 250
Social Cost of Carbon Dioxide	methodology, 231–236
(SC-CO ₂), 29	results, 236–241
Social discounting, 28	Sustainable energy systems, 238
Social globalisation, 174	Sustainable Livelihood Framework
Society-economy-ecology-food	(SLA), 293
relationships, 199	Sustainable water management for
Socio-economic indicators, 148	CSA, 200
Socio-economic phenomena, 232	benefits of staggered trenches,
Solid, 129–130	201–203
Solid wastes, 293	changes in agri-hydroscape,
South Asia, 43	203–205
South Asian nations and energy used,	other changes in socioeconomic
127	conditions, 205
Stacked chart, 186	staggered trenches for, 201
Staggered trenches	
benefits of, 201–203	Technical efficiency change (TEC), 6,
for Sustainable Soil Water	262–269, 274
Conservation Structure, 201	Technical inefficiency function, 266
Static panel approach, 217	Technological progress (TP), 6,
Static panel data approach	262–275
data and methodology, 219–220	towards fuel efficiency, impact of,
literature review, 218–219	119
panel data results, 223–225	TFP, 314
results, 220–221	Thermal power plants, 221
trend analysis of FDI inflows,	Time dummies (TD), 347
221–223	Time-series econometric methods, 17-

Time-series econometric tests to Urban Population, 99 assess nature of variables, Urbanisation (UPOP), 108 318-320 in South Asian, 129 Total factor productivity growth (TFPG), 2, 157, 262 Value chain, 15, 18–19 data and variables, 266-267 Variables, 320 empirical results, 267–275 definition of, 98–100 measurement of TFPG from transdescription of dependent and independent variables and log production function, 161-162 Asian economies surveyed, method for measuring, 316–317 99 Variance inflationary factor (VIF), methodologies, 264–267 Trade globalisation (TRDG), 174 148 Trade policies, 55 Vector Error Correction Model Trans-log form, 316 (VECM), 4 Trans-log production function, estimation test, 134-135 measurement of TFPG Vehicles, 332–333 from, 161–162 pollution, 126 Trend of major vehicular emission, Vehicular emission, 334 336-337 trend of major, 336-337 Vehicular pollutants, status of, **UN Sustainable Development Goals** 339-340 (SDG), 42, 293–294 Vehicular pollution, 335 Volatile organic compounds (VOCs), Unified growth theory, 251 Unit root test, 98, 318–319 280 United Nations (UN), 292 United Nations Conference on Wald test 134-135 Trade and Development Waste CO₂, 12 (UNCTAD), 219 Waste generation, 293 United Nations Framework Water resources Convention on Climate impacts of climate change on Change (UNFCCC), 254 Jordan, 81–82 United Nations General Assembly political and economic aspects of Jordan's water resources, (UNGA), 44 Unorganised industries, 354 82 - 84Unorganised Manufacturing preventing environmental Enterprises (UME), 7, 344 degradation and solving analysis of CO₂ emission, 345 water scarcity problem of Urban air pollution, 334 Jordan to sustain industrial Urban Environmental Sustainability and economic growth, 84–85 city development plans in India, Water scarcity problem of Jordan 294-297 to sustain industrial evaluation of SCM, 297-306 and economic growth, holistic framework, 306-310 preventing, 84–85 Urban infrastructure development, Water sector, 83 293 Water security, 201

368 *Index*

Water supply, 83
Water-energy-food nexus, 208
West Bengal pollution control board, 332
Wholesale Price Index (WPI), 346
Willingness to pay, 143
Within-dimension test, 134

World Bank (WB), 46
World Commission on Environment
and Development
(WCED), 41
World Health Organization (WHO),
46, 185
Wu Housman specification test, 220