Search results

1 – 10 of 131
Article
Publication date: 2 January 2023

Ana Aline Mendes Paim, Morgana Carneiro de Andrade and Fernanda Steffens

Given the COVID-19 Pandemic outbreak and the role of medical textiles for protection, this study aims to identify the leading research foci on using textile materials for personal…

Abstract

Purpose

Given the COVID-19 Pandemic outbreak and the role of medical textiles for protection, this study aims to identify the leading research foci on using textile materials for personal protection in pandemic situations.

Design/methodology/approach

A systematic review and systemic analysis of the literature on the subject were performed using the process knowledge development – constructivist (ProKnow-C) methodology.

Findings

A bibliographic portfolio with 16 relevant studies was obtained. This portfolio represents the main focus of this research field, including the main filtration mechanisms, ways of disinfecting N95 respirators and proposed methods to evaluate the filtration efficiency of different materials with potential for mask development.

Originality/value

To the best of the authors’ knowledge, this is the first time the ProKnow-C methodology was used in the textile field. Thus, future studies can benefit from using the Proknow-C for selecting and analyzing relevant textile studies following a systematic approach.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 24 January 2023

Raphael Kanyire Seidu, Shou-xiang Jiang, Benjamin Tawiah, Richard Acquaye and Ebenezer Kofi Howard

The purpose of this study is to present a systematic review of the effects of COVID-19 on the conventional textile production subsector. The emergence of the COVID-19 virus in…

Abstract

Purpose

The purpose of this study is to present a systematic review of the effects of COVID-19 on the conventional textile production subsector. The emergence of the COVID-19 virus in 2019 has subsequently caused many problems, such as unemployment, business closures, economic instability and high volatility in the global capital markets amongst others within the wider manufacturing industry including textile production.

Design/methodology/approach

Relevant secondary data are obtained from the Scopus database and Statista. Based on the data analysis of 21 seed articles, three research themes are identified: challenges in the textile industry, new material innovations or solutions and the textile industry performance.

Findings

The results reveal that the COVID-19 pandemic has affected the textile industry, disrupted the supply chains of this industry, affected profit margins, stopped employment and impacted the retail of products to customers. Aside from the negative repercussions, there are also good sides to the pandemic which, for instance, range from advanced material innovations to textiles with anti-microbial, self-cleaning and anti-bacterial properties that would limit the transfer of the virus.

Practical implications

Findings reinforced the need for effective strategies and investments in the research and development departments of the various firms in the textile industry to innovate operations and novel materials for the next global pandemic.

Originality/value

Many companies have adopted novel strategies and practices that are helping them to survive the pandemic. This study, therefore, recommends further investigation into material innovations and reimagining strategies by companies and the supply chain within the textile industry so that it is protected against future crises.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 29 August 2023

Erik Velasco and Elvagris Segovia

Waiting for a bus may represent a period of intense exposure to traffic particles in hot and noisy conditions in the street. To lessen the particle load and tackle heat in bus…

Abstract

Purpose

Waiting for a bus may represent a period of intense exposure to traffic particles in hot and noisy conditions in the street. To lessen the particle load and tackle heat in bus stops a shelter was equipped with an electrostatic precipitator and a three-step adiabatic cooling system capable of dynamically adjust its operation according to actual conditions. This study evaluates the effectiveness of the Airbitat Oasis Smart Bus Stop, as the shelter was called, to provide clean and cool air.

Design/methodology/approach

The particle exposure experienced in this innovative shelter was contrasted with that in a conventional shelter located right next to it. Mass concentrations of fine particles and black carbon, and particle number concentration (as a proxy of ultrafine particles) were simultaneously measured in both shelters. Air temperature, relative humidity and noise level were also measured.

Findings

The new shelter did not perform as expected. It only slightly reduced the abundance of fine particles (−6.5%), but not of ultrafine particles and black carbon. Similarly, it reduced air temperature (−1 °C), but increased relative humidity (3%). Its operation did not generate additional noise.

Practical implications

The shelter's poor performance was presumably due to design flaws induced by a lack of knowledge on traffic particles and fluid dynamics in urban environments. This is an example where harnessing technology without understanding the problem to solve does not work.

Originality/value

It is uncommon to come across case studies like this one in which the performance and effectiveness of urban infrastructure can be assessed under real-life service settings.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 28 February 2023

Sandra Matarneh, Faris Elghaish, Amani Al-Ghraibah, Essam Abdellatef and David John Edwards

Incipient detection of pavement deterioration (such as crack identification) is critical to optimizing road maintenance because it enables preventative steps to be implemented to…

Abstract

Purpose

Incipient detection of pavement deterioration (such as crack identification) is critical to optimizing road maintenance because it enables preventative steps to be implemented to mitigate damage and possible failure. Traditional visual inspection has been largely superseded by semi-automatic/automatic procedures given significant advancements in image processing. Therefore, there is a need to develop automated tools to detect and classify cracks.

Design/methodology/approach

The literature review is employed to evaluate existing attempts to use Hough transform algorithm and highlight issues that should be improved. Then, developing a simple low-cost crack detection method based on the Hough transform algorithm for pavement crack detection and classification.

Findings

Analysis results reveal that model accuracy reaches 92.14% for vertical cracks, 93.03% for diagonal cracks and 95.61% for horizontal cracks. The time lapse for detecting the crack type for one image is circa 0.98 s for vertical cracks, 0.79 s for horizontal cracks and 0.83 s for diagonal cracks. Ensuing discourse serves to illustrate the inherent potential of a simple low-cost image processing method in automated pavement crack detection. Moreover, this method provides direct guidance for long-term pavement optimal maintenance decisions.

Research limitations/implications

The outcome of this research can help highway agencies to detect and classify cracks accurately for a very long highway without a need for manual inspection, which can significantly minimize cost.

Originality/value

Hough transform algorithm was tested in terms of detect and classify a large dataset of highway images, and the accuracy reaches 92.14%, which can be considered as a very accurate percentage regarding automated cracks and distresses classification.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 19 May 2023

Zeliha Betül Kol and Dilek Duranoğlu

This study aims to model and investigate Basic Yellow 28 (BY28) adsorption onto activated carbon in batch and continuous process.

Abstract

Purpose

This study aims to model and investigate Basic Yellow 28 (BY28) adsorption onto activated carbon in batch and continuous process.

Design/methodology/approach

Batch adsorption experiments were carried out at 25 °C with 50 mg/L BY28 solution at pH 6 with different amounts of activated carbon. Freundlich and Langmuir adsorption isotherm models were used to model batch data. Pseudo-first-order and pseudo-second-order kinetic models were applied with linear regression. The changes of the breakthrough curve with the column height, flow rate, column diameter and adsorbent amount were examined in fixed bed column at room temperature. BY28 adsorption data were modelled by using different adsorption column models (Adams & Bohart, Thomas, Yoon & Nelson, Clark and modified dose–response) with non-linear regression.

Findings

Freundlich model and pseudo-second-order kinetic model expressed the experimental data with high compatibility. Modified dose-response model corresponded to the fixed bed column data very well.

Originality/value

Adsorption of Basic Yellow 28 on activated carbon in a fixed bed column was studied for the first time. Continuous adsorption process was modelled with theoretical adsorption models using non-linear regression.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 18 March 2024

Min Zeng, Jianxing Xie, Zhitao Li, Qincheng Wei and Hui Yang

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter…

Abstract

Purpose

This study aims to introduce a novel technique for nonlinear sensor time constant estimation and sensor dynamic compensation in hot-bar soldering using an extended Kalman filter (EKF) to estimate the temperature of the thermocouple.

Design/methodology/approach

Temperature optimal control is combined with a closed-loop proportional integral differential (PID) control method based on an EKF. Different control methods for measuring the temperature of the thermode in terms of temperature control, error and antidisturbance are studied. A soldering process in a semi-industrial environment is performed. The proposed control method was applied to the soldering of flexible printed circuits and circuit boards. An infrared camera was used to measure the top-surface temperature.

Findings

The proposed method can not only estimate the soldering temperature but also eliminate the noise of the system. The performance of this methodology was exemplary, characterized by rapid convergence and negligible error margins. Compared with the conventional control, the temperature variability of the proposed control is significantly attenuated.

Originality/value

An EKF was designed to estimate the temperature of the thermocouple during hot-bar soldering. Using the EKF and PID controller, the nonlinear properties of the system could be effectively overcome and the effects of disturbances and system noise could be decreased. The proposed method significantly enhanced the temperature control performance of hot-bar soldering, effectively suppressing overshoot and shortening the adjustment time, thereby achieving precise temperature control of the controlled object.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 12 September 2023

Mohammad Hossein Dehghani Sadrabadi, Ahmad Makui, Rouzbeh Ghousi and Armin Jabbarzadeh

The adverse interactions between disruptions can increase the supply chain's vulnerability. Accordingly, establishing supply chain resilience to deal with disruptions and…

Abstract

Purpose

The adverse interactions between disruptions can increase the supply chain's vulnerability. Accordingly, establishing supply chain resilience to deal with disruptions and employing business continuity planning to preserve risk management achievements is of considerable importance. The aforementioned idea is discussed in this study.

Design/methodology/approach

This study proposes a multi-objective optimization model for employing business continuity management and organizational resilience in a supply chain for responding to multiple interrelated disruptions. The improved augmented e-constraint and the scenario-based robust optimization methods are adopted for multi-objective programming and dealing with uncertainty, respectively. A case study of the automotive battery manufacturing industry is also considered to ensure real-world conformity of the model.

Findings

The results indicate that interactions between disruptions remarkably increase the supply chain's vulnerability. Choosing a higher fortification level for the supply chain and foreign suppliers reduces disruption impacts on resources and improves the supply chain's resilience and business continuity. Facilities dispersion, fortification of facilities, lateral transshipment, order deferral policy, dynamic capacity planning and direct transportation of products to markets are the most efficient resilience strategies in the under-study industry.

Originality/value

Applying resource allocation planning and portfolio selection to adopt preventive and reactive resilience strategies simultaneously to manage multiple interrelated disruptions in a real-world automotive battery manufacturing industry, maintaining the long-term achievements of supply chain resilience using business continuity management and dynamic capacity planning are the main contributions of the presented paper.

Article
Publication date: 12 April 2023

Shaobo Liang and Linfeng Yu

As voice search has progressively become a new way of information acquisition and human–computer interaction, this paper aims to explore the users' voice search behavior in…

Abstract

Purpose

As voice search has progressively become a new way of information acquisition and human–computer interaction, this paper aims to explore the users' voice search behavior in human–vehicle interaction.

Design/methodology/approach

This study employed mixed research methods, including questionnaires and interviews. A total of 151 Amazon MTurk volunteers were recruited to complete a questionnaire based on their most recent and impressive voice search experience. After the questionnaire, this paper conducted an online interview with the participants.

Findings

This paper studied users' voice search behavior characteristics in the context of the human–vehicle interaction and analyzed the voice search content, search need, search motivation and user satisfaction. In addition, this paper studied the barriers and suggestions for voice search in human–vehicle interaction through a content analysis of the interviews.

Practical implications

This paper's analysis of users' barriers and suggestions has a specific reference value for optimizing the voice search interaction system and improving the service.

Originality/value

This study is exploratory research that seeks to identify users' voice search needs and tasks and investigate voice search satisfaction in human–vehicle interaction context.

Details

Library Hi Tech, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 31 January 2024

Tamer Refaat and Marwa El-Zoklah

This study aims to formulate a user-friendly pre-design model that could be a decision support tool for green wall systems to assist designers in selecting an optimal green wall…

Abstract

Purpose

This study aims to formulate a user-friendly pre-design model that could be a decision support tool for green wall systems to assist designers in selecting an optimal green wall system aligned with specified performance criteria while concurrently addressing project requirements linked to social and economic parameters. This approach seeks to enhance overall project satisfaction for the designer and the owner.

Design/methodology/approach

A correlation between the green wall context and design requirements and its performance on the buildings have been defined by considering its social and economic parameters, which represented the owner preferences to ensure the most satisfaction from installation as it achieves the required performance that is defined by the designer such as maximizing thermal insulation, improving indoor air quality, reducing the needed heating and cooling loads, etc. and also to achieve the satisfaction in social and economic requirements defined by the owner such as system installation cost, system maintenance cost, adding beauty value, etc.

Findings

The research developed an easy pre-design model to be a tool for green wall system decision-making for the most suitable system, which contains three main steps: the first one is defining the required performance of the green wall (designer requirements), the second step is limiting the context of the project which is made by designer and the owner requirements and finally the third step is choosing the system components that ensures achieving the requirements of both owners and designer, related to the building and climate context.

Originality/value

The added value lies in developing a green wall decision-making tool, essentially a pre-design model. This model considers the correlation between the project’s context, encompassing climate and building conditions. It provides a structured approach for decision-making in the early stages of green wall design. It offers valuable insights into the optimal choices related to system type, installation methods and plant characteristics. This enhanced decision-making tool contributes to more informed and efficient design processes, considering each project’s specific needs and conditions.

Details

Open House International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 12 July 2023

Hadi Mahamivanan, Navid Ghassemi, Mohammad Tayarani Darbandy, Afshin Shoeibi, Sadiq Hussain, Farnad Nasirzadeh, Roohallah Alizadehsani, Darius Nahavandi, Abbas Khosravi and Saeid Nahavandi

This paper aims to propose a new deep learning technique to detect the type of material to improve automated construction quality monitoring.

Abstract

Purpose

This paper aims to propose a new deep learning technique to detect the type of material to improve automated construction quality monitoring.

Design/methodology/approach

A new data augmentation approach that has improved the model robustness against different illumination conditions and overfitting is proposed. This study uses data augmentation at test time and adds outlier samples to training set to prevent over-fitted network training. For data augmentation at test time, five segments are extracted from each sample image and fed to the network. For these images, the network outputting average values is used as the final prediction. Then, the proposed approach is evaluated on multiple deep networks used as material classifiers. The fully connected layers are removed from the end of the networks, and only convolutional layers are retained.

Findings

The proposed method is evaluated on recognizing 11 types of building materials which include 1,231 images taken from several construction sites. Each image resolution is 4,000 × 3,000. The images are captured with different illumination and camera positions. Different illumination conditions lead to trained networks that are more robust against various environmental conditions. Using VGG16 model, an accuracy of 97.35% is achieved outperforming existing approaches.

Practical implications

It is believed that the proposed method presents a new and robust tool for detecting and classifying different material types. The automated detection of material will aid to monitor the quality and see whether the right type of material has been used in the project based on contract specifications. In addition, the proposed model can be used as a guideline for performing quality control (QC) in construction projects based on project quality plan. It can also be used as an input for automated progress monitoring because the material type detection will provide a critical input for object detection.

Originality/value

Several studies have been conducted to perform quality management, but there are some issues that need to be addressed. In most previous studies, a very limited number of material types were examined. In addition, although some studies have reported high accuracy to detect material types (Bunrit et al., 2020), their accuracy is dramatically reduced when they are used to detect materials with similar texture and color. In this research, the authors propose a new method to solve the mentioned shortcomings.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of 131