Search results

1 – 10 of over 2000
Article
Publication date: 6 August 2019

Peng Peng and Jiugen Wang

It is a challenging task to analysis oxide wear particles when they are stuck together with other types of wear particles in complex ferrography images. Hence, this paper aims to…

Abstract

Purpose

It is a challenging task to analysis oxide wear particles when they are stuck together with other types of wear particles in complex ferrography images. Hence, this paper aims to propose a method of ferrography image segmentation to analysis oxide wear debris in complex ferrography images.

Design/methodology/approach

First, ferrography images are segmented with watershed transform. Then, two region merging rules are proposed to improve the initial segmentation results. Finally, the features of each particle are extracted to detect and assess the oxide wear particles.

Findings

The results show that the proposed method outperforms other methods of ferrography image segmentation, and the overlapping wear particles in complex ferrography images can be well separated. Moreover, the features of each separated wear particles can be easily extracted to analysis the oxide wear particles.

Practical implications

The proposed method provides a useful approach for the automatic detection and assessment of oxide wear particles in complex ferrography images.

Originality/value

The colours, edges and position information of wear debris are considered in the proposed method to improve the segmentation result. Moreover, the proposed method can not only detect oxide wear particles in ferrography images but also evaluate oxide wear severity in ferrography images.

Details

Industrial Lubrication and Tribology, vol. 71 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 January 1976

P.L. Hurricks

The first part of this paper appeared in our November/December issue and dealt with fretting wear behaviour of mild steel from room temperature to 600°C in air. The general…

Abstract

The first part of this paper appeared in our November/December issue and dealt with fretting wear behaviour of mild steel from room temperature to 600°C in air. The general mechanism for fretting is discussed at all temperatures where normal oxidative processes become involved. The nature of fretting wear is also covered and the effects of temperature are described. In this part of the paper, the discussion is continued to include triboxidation, delamination theory, atmospheric environment, transition temperatures, activitation energy and other factors affecting the influence of temperature on fretting.

Details

Industrial Lubrication and Tribology, vol. 28 no. 1
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 12 September 2019

Sam Joshy, Jayadevan K.R., Ramesh A. and Mahipal D.

In hot forging, a significant amount of forging force is used for overcoming frictional force at the die-billet interface. The high frictional force along with thermomechanical…

Abstract

Purpose

In hot forging, a significant amount of forging force is used for overcoming frictional force at the die-billet interface. The high frictional force along with thermomechanical stress lead to wear, plastic deformation, mechanical fatigue and cracks, which reduce the service life of hot forging dies. Of all these different types of issues, wear is the predominant mode of failure in hot forging dies. This paper aims to describe mechanisms of wear transition in different loads at near forging temperature, occurring during sliding of chromium-based H11 tool steel specimens.

Design/methodology/approach

High temperature pin-on-disc tests are performed with pin specimens machined from bars of X38CrMoV5 steel, heat treated to surface hardness of 40-42 HRc. The disc is made of EN 31 steel with hardness of 60-62 HRc. Tests are performed at constant temperature of 500°C, and the normal load was varied from 20 to 70 N.

Findings

Scanning electron microscopy investigations on worn surface have revealed that wear is primarily due to abrasion and plastic deformation. The test results show an increasing trend in wear rate with increase in load up to 30 N, followed by a reversal in trend until 50 N. This transition in wear rate is caused by development of wear resistant layers, which are formed by compaction of wear debris particles on to the worn surfaces. These compact layers are found to be stable during load range from 40 and 50 N. However, with further increase in load, abrasive wear tracks are observed without any evidence of protective layers. As a result, there is an increase in wear rate with increase in loads above 50 N. In addition, plastic shearing was dominant over abrasive wear at this load regime.

Originality/value

The study on wear behaviour of H11 hot forging steel at 20 to 70 N will be an input to the research in hot forming industries.

Details

World Journal of Engineering, vol. 16 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 February 2004

Jens Kleemann and Mathias Woydt

In a high temperature tribometer, stationary carbon has been tested against different rotating ceramics (SiC, Si3N4, Al2O3, WC‐6Ni, MgO‐ZrO2, (Ti, Mo)(C, N)) and stainless steel…

1377

Abstract

In a high temperature tribometer, stationary carbon has been tested against different rotating ceramics (SiC, Si3N4, Al2O3, WC‐6Ni, MgO‐ZrO2, (Ti, Mo)(C, N)) and stainless steel (DIN 1.4876). The rotating discs were grinded, polished and/or lapped. For most material combinations, the wear morphology is known from available literature. A transfer film with a typical wear pattern was found on the rotating disc. The combination of antimony graphite EK3245 against MgO‐ZrO2 did not form carbonaceous transfer layer. Through advanced variation of the roughness up to Rpk=0.011 μm, the wear rate has been reduced to Kv ≈ 3.5×10−8 mm3/N m at a stable coefficient of friction in a “millirange” of μ∼0.008 for a sliding distance of 20.000 m.

Details

Industrial Lubrication and Tribology, vol. 56 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 February 2022

Puja Prakash More and Maheshwar D. Jaybhaye

The purpose of this paper is to adapt teachable machine as a web-based tool for recognition of wear pattern and type of wear by training a convolutional neural network (CNN…

Abstract

Purpose

The purpose of this paper is to adapt teachable machine as a web-based tool for recognition of wear pattern and type of wear by training a convolutional neural network (CNN) model. This helps to monitor the health of the lubricated system as a part of condition monitoring.

Design/methodology/approach

Ferrography technique is used for analysis of wear particles. It helps monitor the condition of lubricated mechanical system. In present paper, CNN model is developed for identifying the type of wear particles coming out of Gearbox system using teachable machine.

Findings

From the experimentation, it has been observed that the wear severity index has been increased due to increase in wear particle concentration. CNN model has achieved an accuracy of 95.4% to recognize five categories of wear particles.

Originality/value

Teachable machine is generally used for the prediction of images, gestures and sound features. An attempt is made to apply this model for micro and nano wear particles to classify them based on their characteristics.

Details

Industrial Lubrication and Tribology, vol. 74 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 June 2017

Suraj R. and Jithish K.S.

This paper aims to present a comparative study of the wear properties of ferrous welded materials like EN8, EN9 and mild steel (MS).

Abstract

Purpose

This paper aims to present a comparative study of the wear properties of ferrous welded materials like EN8, EN9 and mild steel (MS).

Design/methodology/approach

The material is cut into specific dimension after hardfacing and is studied for the wear properties of the material. The wear testing is done on a pin-on-disc apparatus. The microhardness of the material is studied using the Vickers microhardness measuring apparatus.

Findings

The wear properties of ferrous welded materials like EN8, EN9 and MS are studied. It is found the MS has the least wear when compared to EN8 and EN9. The microhardness of MS is higher than EN8 and EN9, thus making it more wear-resistant than EN8 and EN9. The coefficient of friction in the dry sliding condition is found to be constant throughout the experiment.

Research limitations/implications

Major restriction is the amount of time required for use-wear analysis and replication experiments that are necessary to produce reliable results. These limitations mean that the analysis of total assemblages with the intention of producing specific results, especially of worked materials, is not feasible.

Practical implications

Generally, the complexity and rigour of the analysis depend primarily on the engineering needs and secondarily on the wear situation. It has been the author’s experience that simple and basic wear analyses, conducted in the proper manner, are often adequate in many engineering situations. Integral and fundamental to the wear analysis approach is the treatment of wear and wear behaviour as a system property. As a consequence, wear analysis is not limited to the evaluation of the effects of materials on wear behaviour. Wear analysis often enables the identification of nonmaterial solutions or nonmaterial elements in a solution to wear problems. For example, changes in or recommendations for contact geometry, roughness, tolerance and so on are often the results of a wear analysis.

Originality/value

The value of the work lies in the utility of the results obtained to researchers and users of the EN8, EN9 and EN24 material for their components.

Details

World Journal of Engineering, vol. 14 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 March 2014

Tianchang Hu, Yongsheng Zhang and Litian Hu

– The purpose of this paper is to investigate the mechanical and wear properties of Y-TZP/Al2O3 nanocomposites.

1119

Abstract

Purpose

The purpose of this paper is to investigate the mechanical and wear properties of Y-TZP/Al2O3 nanocomposites.

Design/methodology/approach

In this paper, the Y-TZP/Al2O3 nanocomposites with different crystal-sizes are designed and fabricated by hot pressing. Their mechanical and anti-wear properties are investigated, and the wear mechanism is studied by scanning electron microscopy, X-ray diffraction, and transmission electron microscope and so on.

Findings

The experimental results indicate that the wear of Y-TZP/Al2O3 nanocomposites can be divided into two regimes: mild wear regime and normal wear regime. In mild wear regimes, the relationship between wear resistance (ɛ) and hardness (H) of the material can be described as: ɛ−1∝H−1. The corresponding relationship among wear resistance, hardness and toughness (KIC) of the material in normal wear regime can be described as: ɛ−1∝H−1K IC −4.

Originality/value

In this paper, the mechanical and anti-wear properties of Y-TZP/Al2O3 nanocomposites are systematically investigated. The relation between mechanical properties and wear resistance is revealed.

Details

Industrial Lubrication and Tribology, vol. 66 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 July 2018

Wen-Hsien Kao, Yean-Liang Su, Jeng-Haur Horng and Shu-Er Yang

This paper aims to investigate the tribology, corrosion resistance and biocompatibility of high-temperature gas-nitrided Ti6Al4V alloy.

Abstract

Purpose

This paper aims to investigate the tribology, corrosion resistance and biocompatibility of high-temperature gas-nitrided Ti6Al4V alloy.

Design/methodology/approach

The tribological properties were studied by reciprocating wear tester. The corrosion resistance was evaluated by using potentiodynamic polarization test. The purified mouse leukaemic monocyte macrophage cells are used to investigate the biocompatibility.

Findings

The results show that the nitriding treatment leads to a significant improvement in the hardness and tribological properties of Ti6Al4V alloy. Specifically, compared to untreated Ti6Al4V, the hardness increases from 3.24 to 9.02 GPa, while the wear rate reduces by 12.5 times in sliding against a Ti6Al4V cylinder and 19.6 times in sliding against a Si3N4 ball. Furthermore, the nitriding treatment yields an improved corrosion resistance and a biocompatibility similar to that of untreated Ti6Al4V.

Originality/value

The nitrided Ti6Al4V alloy is an ideal material for the fabrication of load-bearing artificial implants.

Details

Industrial Lubrication and Tribology, vol. 70 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 April 2022

Sathyamoorthy G., Vijay R. and Lenin Singaravelu D.

This study aims to discuss the impact of using bio-polymer (kraft lignin) in the formulation of passenger vehicle disc brake pads (as a substitute for cashew nutshell liquid…

Abstract

Purpose

This study aims to discuss the impact of using bio-polymer (kraft lignin) in the formulation of passenger vehicle disc brake pads (as a substitute for cashew nutshell liquid [CNSL]-based friction dust) and investigate the characteristics of the pads.

Design/methodology/approach

Within the scope of this investigation, three different brake pads were generated by altering the biopolymer-lignin content in conjunction with the friction dust from CNSL without modifying the other components. The brake pads were created in accordance with industry-standard practices. Industrial standards were used to evaluate the newly created brake pad’s thermal, physical and mechanical qualities. The tribological properties of the materials were determined using a full-scale inertia brake dynamometer. The scanning electron microscope examined the worn surfaces in conjunction with elemental mapping.

Findings

The test findings suggest that the brake pads filled with biopolymer-lignin and CNSL-based friction dust (as a partial replacement 50%) exhibited excellent thermal, physical, mechanical characteristics, as well as steady friction and low wear rate.

Originality/value

A bio-polymer (kraft lignin) in friction composites has the potential to produce eco-friendly brake pads and improve the tribological performance of its copper free-composition, which might be used to replace CNSL-based friction dust in friction composites by addressing the issues raised in this work.

Details

Industrial Lubrication and Tribology, vol. 74 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 February 2000

Mircea Terheci

Attempts to reveal some of the factors that might cause measurement and evaluation errors in dry sliding. Discusses matters such us “what” and “how” is simulated and “why” and…

Abstract

Attempts to reveal some of the factors that might cause measurement and evaluation errors in dry sliding. Discusses matters such us “what” and “how” is simulated and “why” and “what” is really measured and suggests ways to tackle these matters. Presents means of avoiding measurement errors as well as suitable testing procedures. Suggests a strategy of experimental work that encompasses the needs of both pure research and engineering design. It was found that the pin‐on‐disc test largely satisfies the conditions for a good simulation of certain engineering applications while providing a wealth of data for both scientific insight and engineering design.

Details

Industrial Lubrication and Tribology, vol. 52 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 2000