Search results

1 – 10 of over 17000
Article
Publication date: 9 February 2023

Qasim Zaheer, Mir Majaid Manzoor and Muhammad Jawad Ahamad

The purpose of this article is to analyze the optimization process in depth, elaborating on the components of the entire process and the techniques used. Researchers have been…

Abstract

Purpose

The purpose of this article is to analyze the optimization process in depth, elaborating on the components of the entire process and the techniques used. Researchers have been drawn to the expanding trend of optimization since the turn of the century. The rate of research can be used to measure the progress and increase of this optimization procedure. This study is phenomenal to understand the optimization process and different algorithms in addition to their application by keeping in mind the current computational power that has increased the implementation for several engineering applications.

Design/methodology/approach

Two-dimensional analysis has been carried out for the optimization process and its approaches to addressing optimization problems, i.e. computational power has increased the implementation. The first section focuses on a thorough examination of the optimization process, its objectives and the development of processes. Second, techniques of the optimization process have been evaluated, as well as some new ones that have emerged to overcome the above-mentioned problems.

Findings

This paper provided detailed knowledge of optimization, several approaches and their applications in civil engineering, i.e. structural, geotechnical, hydraulic, transportation and many more. This research provided tremendous emerging techniques, where the lack of exploratory studies is to be approached soon.

Originality/value

Optimization processes have been studied for a very long time, in engineering, but the current computational power has increased the implementation for several engineering applications. Besides that, different techniques and their prediction modes often require high computational strength, such parameters can be mitigated with the use of different techniques to reduce computational cost and increase accuracy.

Details

Engineering Computations, vol. 40 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 October 2011

Hossein Ahari, Amir Khajepour and Sanjeev Bedi

This paper proposes sheet thickness determination in manufacturing of laminated dies as an optimization problem. The aim of this optimization procedure is finding the best set of…

Abstract

Purpose

This paper proposes sheet thickness determination in manufacturing of laminated dies as an optimization problem. The aim of this optimization procedure is finding the best set of thicknesses which minimizes the volume deviation between actual computer‐aided design (CAD) model and assembled slices.

Design/methodology/approach

This works uses a modified version of genetic algorithms for the optimization purpose. Each set of thicknesses that can cover the whole CAD model surface is considered as a chromosome. Genetic operators such as crossover and mutation have to be modified to be used in this application.

Findings

A new method for finding the total volume deviation between assembled slices and the actual CAD model was developed in this research. On the other hand, the results show how the program can automate the slice plane locations search process.

Research limitations/implications

Premature convergence does not allow the algorithm to search the entire solution space before getting trapped in a local optimum. Even the mutation operator cannot postpone this untimely convergence.

Practical implications

The proposed method is a good substitute for the manual methods that are currently used in industry. These experience‐based methods are mostly based on the decision made by a well‐trained technician on picking up the thicknesses for a specific CAD model.

Originality/value

This is the first attempt at optimizing the slicing method in laminated tooling. Other methods are mostly based on rapid prototyping (RP) and they are not applicable in the laminated tooling process since, despite RP, here not all optimization outputs can be used in practical procedure.

Details

Rapid Prototyping Journal, vol. 17 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 August 2021

Ravi Pratap Singh, Narendra Kumar, Ashutosh Kumar Gupta and Madhusudan Painuly

The purpose of this paper is to investigate experimentally the effect of several input process factors, namely, feed rate, spindle speed, ultrasonic power and coolant pressure, on…

Abstract

Purpose

The purpose of this paper is to investigate experimentally the effect of several input process factors, namely, feed rate, spindle speed, ultrasonic power and coolant pressure, on hole quality measures (penetration rate [PR] and chipping diameter [CD]) in rotary mode ultrasonic drilling of macor bioceramic material.

Design/methodology/approach

The main experiments were planned using the response surface methodology (RSM). Scanning electron microscopy was also used to examine and study the microstructure of machined samples. This study revealed the existence of dominant brittle fracture and little plastic flow that resulted in a material loss from the base work surface. Experiment findings have shown the dependability and adequacy of the proposed mathematical model.

Findings

The percentage of brittle mode deformation rises as the penetration depth of abrasives increases (at increasing levels of feed rate). This was due to the fact that at greater depths of indentation, material loss begins in the form of bigger chunks and develops inter-granular fractures. These stated causes have provided an additional advantage to increasing the CD over the machined rod of bioceramic. The desirability method was also used to optimize multi-response measured responses (PR and CD). The mathematical model created using the RSM method will be very useful in industrial revelation. Furthermore, the investigated answers’ particle swarm optimization (PSO) and teacher-learner-based optimization (TLBO) make the parametric analysis more relevant and productive for real-life industrial practices.

Originality/value

Macor bioceramic has been widely recognized as one of the most highly demanded innovative dental ceramics, receiving expanded industry approval because of its outstanding and superior characteristics. However, effective and efficient processing remains a problem. Among the available contemporary machining methods introduced for processing typical and advanced materials, rotary mode ultrasonic machining has been identified as one of the best suitable candidates for precise processing of macor bioceramics, as this process produces thermal damage-free profiles, as well as high accuracy and an increased material removal rate. The optimized combined setting obtained using PSO is feed rate = 0.16 mm/s, spindle speed = 4,500 rpm, ultrasonic power = 60% and coolant pressure = 280 kPa with the value of fitness function is 0.0508. The optimized combined setting obtained using TLBO is feed rate = 0.06 mm/s, spindle speed = 2,500 rpm, ultrasonic power = 60% and coolant pressure = 280 kPa with the value of fitness function is 0.1703.

Details

World Journal of Engineering, vol. 19 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 July 2020

Colin B. Gabler, V. Myles Landers and Adam Rapp

More than ever, consideration of the natural environment and social welfare are values that firms must signal to their stakeholders. One way to do this is by adopting an…

Abstract

Purpose

More than ever, consideration of the natural environment and social welfare are values that firms must signal to their stakeholders. One way to do this is by adopting an environmental orientation (EO) and pro-social organizational identity (PSOI). The purpose of this paper is to examine how frontline employees (FLEs) respond to these firm-level values through four outcomes.

Design/methodology/approach

Polynomial structural equation modeling with response surface analysis was implemented on FLEs survey data to uncover how different levels of EO and PSOI impact sales performance, word-of-mouth, turnover intent and job satisfaction.

Findings

Both firm-level values have a positive and direct effect on all four outcomes. However, each imposes a boundary condition as well. Specifically, salespeople perform better when their firm has a stronger EO, but they are happier in their work, less likely to quit and more likely to spread positive word-of-mouth when PSOI is stronger.

Practical implications

The results suggest that perceptions of a firm-level EO or PSOI enhance employee-level outcomes. Signaling to employees that your firm cares about the natural environment and the greater social good positively influences employee outcomes, but optimization of each outcome depends on the strength of those values.

Originality/value

This research answers two specific research calls. First, it applies signaling theory to the workplace context, positioning FLEs as the receivers and feedback mechanisms of firm-level signals. Second, using too-much-of-a-good-thing logic, it uncovers boundary conditions imposed by social and environmental constructs on frontline outcomes.

Article
Publication date: 4 September 2020

Benjamin Chukudi Oji and Sunday Ayoola Oke

There is growing evidence of a knowledge gap in the association of maintenance with production activities in bottling plants. Indeed, insights into how to jointly optimise these…

Abstract

Purpose

There is growing evidence of a knowledge gap in the association of maintenance with production activities in bottling plants. Indeed, insights into how to jointly optimise these activities are not clear. In this paper, two optimisation models, Taguchi schemes and response surface methodology are proposed.

Design/methodology/approach

Borrowing from the “hard” total quality management elements in optimisation and prioritisation literature, two new models were developed based on factor, level and orthogonal array selection, signal-to-noise ratio, analysis of variance and optimal parametric settings as Taguchi–ABC and Taguchi–Pareto. An additional model of response surface methodology was created with analysis on regression, main effects, residual plots and surface plots.

Findings

The Taguchi S/N ratio table ranked planned maintenance as the highest. The Taguchi–Pareto shows the optimal parametric setting as A4B4C1 (28 h of production, 30.56 shifts and 37 h of planned maintenance). Taguchi ABC reveals that the planned maintenance and number of shifts will influence the outcome of production greatly. The surface regression table reveals that the production hours worked decrease at a value of planned maintenance with a decrease in the number of shifts.

Originality/value

This is the first time that joint optimisation for bottling plant will be approached using Taguchi–ABC and Taguchi–Pareto. It is also the first time that response surface will be applied to optimise a unique platform of the bottling process plant.

Details

The TQM Journal, vol. 33 no. 2
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 11 March 2019

Oguchi Nkwocha

Measures are important to healthcare outcomes. Outcome changes result from deliberate selective intervention introduction on a measure. If measures can be characterized and…

Abstract

Purpose

Measures are important to healthcare outcomes. Outcome changes result from deliberate selective intervention introduction on a measure. If measures can be characterized and categorized, then the resulting schema may be generalized and utilized as a framework for uniquely identifying, packaging and comparing different interventions and probing target systems to facilitate selecting the most appropriate intervention for maximum desired outcomes. Measure characterization was accomplished with multi-axial statistical analysis and measure categorization by logical tabulation. The measure of interest is a key provider productivity index: “patient visits per hour,” while the specific intervention is “patient schedule manipulation by overbooking.” The paper aims to discuss these issues.

Design/methodology/approach

For statistical analysis, interrupted time series (ITS), robust-ITS and outlier detection models were applied to an 18-month data set that included patient visits per hour and intervention introduction time. A statistically significant change-point was determined, resulting in pre-intervention, transitional and post-effect segmentation. Linear regression modeling was used to analyze pre-intervention and post-effect mean change while a triangle was used to analyze the transitional state. For categorization, an “intervention moments” table was constructed from the analysis results with: time-to-effect, pre- and post-mean change magnitude and velocity; pre- and post-correlation and variance; and effect decay/doubling time. The table included transitional parameters such as transition velocity and transition footprint visualization represented as a triangle.

Findings

The intervention produced a significant change. The pre-intervention and post-effect means for patient visits per hour were statistically different (0.38, p=0.0001). The pre- and post-variance change (0.23, p=0.01) was statistically significant (variance was higher post-intervention, which was undesirable). Post-intervention correlation was higher (desirable). Decay time for the effect was calculated as 11 months post-effect. Time-to-effect was four months; mean change velocity was +0.094 visits per h/month. A transition triangular footprint was produced, yielding 0.35 visits per hr/month transition velocity. Using these results, the intervention was fully profiled and thereby categorized as an intervention moments table.

Research limitations/implications

One limitation is sample size for this time series, 18 monthly cycles’ analysis. However, interventions on measures in healthcare demand short time cycles (hence necessarily yielding fewer data points) for practicality, meaningfulness and usefulness. Despite this shortcoming, the statistical processes applied such as outliers detection, t-test for mean difference, F-test for variances and modeling, all consider the small sample sizes. Seasonality, which usually affects time series, was not detected and even if present, was also considered by modeling.

Practical implications

Obtaining an intervention profile, made possible by multidimensional analysis, allows interventions to be uniquely classified and categorized, enabling informed, comparative and appropriate selective deployment against health measures, thus potentially contributing to outcomes optimization.

Social implications

The inevitable direction for healthcare is heavy investment in measures outcomes optimization to improve: patient experience; population health; and reduce costs. Interventions are the tools that change outcomes. Creative modeling and applying novel methods for intervention analysis are necessary if healthcare is to achieve this goal. Analytical methods should categorize and rank interventions; probe the measures to improve future selection and adoption; reveal the organic systems’ strengths and shortcomings implementing the interventions for fine-tuning for better performance.

Originality/value

An “intervention moments table” is proposed, created from a multi-axial statistical intervention analysis for organizing, classifying and categorizing interventions. The analysis-set was expanded with additional parameters such as time-to-effect, mean change velocity and effect decay time/doubling time, including transition zone analysis, which produced a unique transitional footprint; and transition velocity. The “intervention moments” should facilitate intervention cross-comparisons, intervention selection and optimal intervention deployment for best outcomes optimization.

Details

International Journal of Health Care Quality Assurance, vol. 32 no. 2
Type: Research Article
ISSN: 0952-6862

Keywords

Article
Publication date: 8 March 2022

Mazin A.M. Al Janabi

This paper aims to empirically test, from a regulatory portfolio management standpoint, the application of liquidity-adjusted risk techniques in the process of getting optimum and…

Abstract

Purpose

This paper aims to empirically test, from a regulatory portfolio management standpoint, the application of liquidity-adjusted risk techniques in the process of getting optimum and investable economic-capital structures in the Gulf Cooperation Council financial markets, subject to applying various operational and financial optimization restrictions under crisis outlooks.

Design/methodology/approach

The author implements a robust methodology to assess regulatory economic-capital allocation in a liquidity-adjusted value at risk (LVaR) context, mostly from the standpoint of investable portfolios analytics that have long- and short-sales asset allocation or for those portfolios that contain long-only asset allocation. The optimization route is accomplished by controlling the nonlinear quadratic objective risk function with certain regulatory constraints along with LVaR-GARCH-M (1,1) procedure to forecast conditional risk parameters and expected returns for multiple asset classes.

Findings

The author’s conclusions emphasize that the attained investable economic-capital portfolios lie-off the efficient frontier, yet those long-only portfolios seem to lie near the efficient frontier than portfolios with long- and short-sales assets allocation. In effect, the newly observed market microstructures forms and derived deductions were not apparent in prior research studies (Al Janabi, 2013).

Practical implications

The attained empirical results are quite interesting for practical portfolio optimization, within the environments of big data analytics, reinforcement machine learning, expert systems and smart financial applications. Furthermore, it is quite promising for multiple-asset portfolio management techniques, performance measurement and improvement analytics, reinforcement machine learning and operations research algorithms in financial institutions operations, above all after the consequences of the 2007–2009 financial crisis.

Originality/value

While this paper builds on Al Janabi’s (2013) optimization algorithms and modeling techniques, it varies in the sense that it covers the outcomes of a multi-asset portfolio optimization method under severe event market scenarios and by allowing for both long-only and combinations of long-/short-sales multiple asset. The achieved empirical results, optimization parameters and efficient and investable economic-capital figures were not apparent in Al Janabi’s (2013) paper because the prior evaluation were performed under normal market circumstances and without bearing in mind the impacts of the 2007–2009 global financial crunch.

Article
Publication date: 25 November 2020

Muhammad Sabbir Rahman, Bashir Hussain, Hasliza Hassan and Ishrat Jahan Synthia

This study aims to empirically investigate the effects of supportive, innovative and information technology (IT)-driven organisational culture on the optimisation of…

Abstract

Purpose

This study aims to empirically investigate the effects of supportive, innovative and information technology (IT)-driven organisational culture on the optimisation of knowledge-sharing behaviour capability (KSBC) among sales executives. The authors propose that such effects are mediated by the sense of well-being (SWB) and IT-driven absorptive capacity (ITAC) among sales executives.

Design/methodology/approach

A conceptual model was developed. Survey data were based on a sample of 323 sales executives of different manufacturing and service-intensive (i.e. business to consumers) firms. The data analyses were conducted by structural equation modelling (SEM) and fuzzy-set qualitative comparative analysis (fsQCA) methods.

Findings

Results from SEM support all the direct relationships. Supportive and innovative organisational culture has a significant and positive influence on the optimisation of KSBC among sales executives, and these effects are mediated by their SWB. Moreover, the ITAC of sales executives mediated the relationships between IT-driven organisational culture and optimisation of KSBC among them. Results from fsQCA with the same data show that ITAC and SWB among sales executives are necessary conditions for the optimisation of KSBC. In addition, ten combinations of these variables were explored, where three sufficient conditions significantly influenced the outcome variable.

Research limitations/implications

This study is cross-sectional in nature and is conducted among sales executives by combining the data from manufacturing and service-intensive firms. To examine the proposed model, this study can be supplemented by future research using a longitudinal data collection method separately.

Practical implications

This research shows an effective role to optimise KSBC among sales executives in the field of knowledge management practice literature. Supportive, innovative and harmonious culture, IT-driven communication platform and well-established IT learning plans implemented by the firms can sophisticate to optimise KSBC among sales executives.

Originality/value

To the best of the authors’ knowledge, this research is a pioneer study conducted to explain the KSBC among sales executives by using mixed methods research. This research discusses the antecedent of knowledge-sharing capability among sales executives from the viewpoint of sales executive’s psychology and identifies the different roles of SWB and ITAC on individual’s KSBC.

Article
Publication date: 25 April 2024

Xu Yang, Xin Yue, Zhenhua Cai and Shengshi Zhong

This paper aims to present a set of processes for obtaining the global spraying trajectory of a cold spraying robot on a complex surface.

Abstract

Purpose

This paper aims to present a set of processes for obtaining the global spraying trajectory of a cold spraying robot on a complex surface.

Design/methodology/approach

The complex workpiece surfaces in the project are first divided by triangular meshing. Then, the geodesic curve method is applied for local path planning. Finally, the subsurface trajectory combination optimization problem is modeled as a GTSP problem and solved by the ant colony algorithm, where the evaluation scores and the uniform design method are used to determine the optimal parameter combination of the algorithm. A global optimized spraying trajectory is thus obtained.

Findings

The simulation results show that the proposed processes can achieve the shortest global spraying trajectory. Moreover, the cold spraying experiment on the IRB4600 six-joint robot verifies that the spraying trajectory obtained by the processes can ensure a uniform coating thickness.

Originality/value

The proposed processes address the issue of different parameter combinations, leading to different results when using the ant colony algorithm. The two methods for obtaining the optimal parameter combinations can solve this problem quickly and effectively, and guarantee that the processes obtain the optimal global spraying trajectory.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 3 August 2018

Henry Lau, C.K.M. Lee, Dilupa Nakandala and Paul Shum

The purpose of this paper is to propose an outcome-based process optimization model which can be deployed in companies to enhance their business operations, strengthening their…

Abstract

Purpose

The purpose of this paper is to propose an outcome-based process optimization model which can be deployed in companies to enhance their business operations, strengthening their competitiveness in the current industrial environment. To validate the approach, a case example has been included to assess the practicality and validity of this approach to be applied in actual environment.

Design/methodology/approach

This model embraces two approaches including: fuzzy logic for mimicking the human thinking and decision making mechanism; and data mining association rules approach for optimizing the analyzed knowledge for future decision-making as well as providing a mechanism to apply the obtained knowledge to support the improvement of different types of processes.

Findings

The new methodology of the proposed algorithm has been evaluated in a case study and the algorithm shows its potential to determine the primary factors that have a great effect upon the final result of the entire operation comprising a number of processes. In this case example, relevant process parameters have been identified as the important factors causing significant impact on the result of final outcome.

Research limitations/implications

The proposed methodology requires the dependence on human knowledge and personal experience to determine the various fuzzy regions of the processes. This can be fairly subjective and even biased. As such, it is advisable that the development of artificial intelligence techniques to support automatic machine learning to derive the fuzzy sets should be promoted to provide more reliable results.

Originality/value

Recent study on the relevant topics indicates that an intelligent process optimization approach, which is able to interact seamlessly with the knowledge-based system and extract useful information for process improvement, is still seen as an area that requires more study and investigation. In this research, the process optimization system with an effective process mining algorithm embedded for supporting knowledge discovery is proposed for use to achieve better quality control.

Details

Industrial Management & Data Systems, vol. 118 no. 6
Type: Research Article
ISSN: 0263-5577

Keywords

1 – 10 of over 17000