Search results

1 – 5 of 5
Article
Publication date: 3 October 2022

Sara Mirzabagheri and Osama (Sam) Salem

Since columns are critical structural elements, they shall withstand hazards without any considerable damage. In the case of a fire, although concrete has low thermal conductivity…

82

Abstract

Purpose

Since columns are critical structural elements, they shall withstand hazards without any considerable damage. In the case of a fire, although concrete has low thermal conductivity compared to other construction materials, its properties are changed at elevated temperatures. Most critically, the residual compressive strengths of reinforced concrete columns are significantly reduced after fire exposure. Validation of the worthiness of rehabilitating concrete structures after fire exposure is highly dependent on accurately determining the residual strengths of fire-damaged essential structural elements such as columns.

Design/methodology/approach

In this study, eight reinforced-concrete columns (200 × 200 × 1,500 mm) that were experimentally examined in a prior related study have been numerically modelled using ABAQUS software to investigate their residual compressive strengths after exposure to different durations of standard fire (i.e. one and two hours) while subjected to different applied load ratios (i.e. 20 and 40% of the compressive resistance of the column). Outcomes of the numerical simulations were verified against the prior study's experimental results.

Findings

In a subsequent phase, the results of a parametric study that has been completed as part of the current study to investigate the effects of the applied load ratios show that the application of axial load up to 80% of the compressive resistance of the column did not considerably influence the residual compressive strength of the shorter columns (i.e. 1,500 and 2,000-mm high). However, increasing the height of the column to 2,500 or 3,000 mm considerably reduced the residual compressive strength when the load ratio applied on the columns exceeded 60 and 40%, respectively. Also, when the different columns were simulated under two-hour standard fire exposure, the dominant failure was buckling rather than concrete crushing which was the typical failure mode in most columns.

Originality/value

The outcomes of the numerical study presented in this paper reflect the residual compressive strength of RC columns subjected to various applied load ratios and standard fire durations. Also, the parametric study conducted as part of this research on the effects of higher load ratios and greater column heights on the residual compressive strength of the fire-damaged columns is practical and efficient. The developed computer models can be beneficial to assist engineers in assessing the validity of rehabilitating concrete structures after being exposed to fire.

Details

Journal of Structural Fire Engineering, vol. 14 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 January 2022

Oluwamuyiwa Okunrounmu, Osama (Sam) Salem and George Hadjisophocleous

The fire resistance of timber structures is heavily dependent on the fire behaviour of the connections between its structural elements. The experimental study presented in this…

Abstract

Purpose

The fire resistance of timber structures is heavily dependent on the fire behaviour of the connections between its structural elements. The experimental study presented in this paper aimed to investigate the fire performance of glued-laminated timber beam connections reinforced perpendicular-to-wood grain with self-tapping screws (STS).

Design/methodology/approach

Two full-size fire experiments were conducted on glulam beam-end connections loaded in flexure bending. Two connection configurations, each utilizing four steel bolts arranged in two different patterns, were reinforced perpendicular to wood grain using STS. The bolt heads and nuts and the steel plate top and bottom edges were fire protected using wood plugs and strips, respectively. Each connection configuration was loaded to 100% of the ultimate design load of the weakest unreinforced configuration. The test assemblies were exposed to elevated temperatures that followed the CAN/ULC-S101 standard fire time–temperature curve.

Findings

The experimental results show that the influence of the STS was significant as it prevented the occurrence of wood splitting and row shear-out and as a result, increased the fire resistance time of the connections. The time to failure of both connection configurations exceeded the minimum fire resistance rating specified as 45 min for combustible construction in applicable building codes.

Originality/value

The experimental data show the effectiveness of a simple fire protection system (i.e. wood plugs and strips) along with the utilization of STS on the rotational behaviour, charring rate, fire resistance time and failure mode of the proposed hybrid mass timber beam-end connection configurations.

Details

Journal of Structural Fire Engineering, vol. 13 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 30 September 2019

Adam Roman Petrycki and Osama (Sam) Salem

In fire condition, the time to failure of a timber connection is mainly reliant on the wood charring rate, the strength of the residual wood section, and the limiting temperature…

216

Abstract

Purpose

In fire condition, the time to failure of a timber connection is mainly reliant on the wood charring rate, the strength of the residual wood section, and the limiting temperature of the steel connectors involved in the connection. The purpose of this study is to experimentally investigate the effects of loaded bolt end distance, number of bolt rows, and the existence of perpendicular-to-wood grain reinforcement on the structural fire behavior of semi-rigid glued-laminated timber (glulam) beam-to-column connections that used steel bolts and concealed steel plate connectors.

Design/methodology/approach

In total, 16 beam-to-column connections, which were fabricated in wood-steel-wood bolted connection configurations, in eight large-scale sub-frame test assemblies were exposed to elevated temperatures that followed CAN/ULC-S101 standard time-temperature curve, while being subjected to monotonic loading. The beam-to-column connections of four of the eight test assemblies were reinforced perpendicular to the wood grain using self-tapping screws (STS). Fire tests were terminated upon achieving the failure criterion, which predominantly was dependent on the connection’s maximum allowed rotation.

Findings

Experimental results revealed that increasing the number of bolt rows from two to three, each of two bolts, increased the connection’s time to failure by a greater time increment than that achieved by increasing the bolt end distance from four- to five-times the bolt diameter. Also, the use of STS reinforcement increased the connection’s time to failure by greater time increments than those achieved by increasing the number of bolt rows or the bolt end distance.

Originality/value

The invaluable experimental data obtained from this study can be effectively used to provide insight and better understanding on how mass-timber glulam bolted connections can behave in fire condition. This can also help in further improving the existing design guidelines for mass-timber structures. Currently, beam-to-column wood connections are designed mainly as axially loaded connections with no guidelines available for determining the fire resistance of timber connections exerting any degree of moment-resisting capability.

Details

Journal of Structural Fire Engineering, vol. 14 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 29 March 2018

Osama (Sam) Salem

In fire condition, the limiting temperature of a restrained steel beam depends on a few parameters, e.g. temperature distributions along and across the beam, beam’s load ratio and…

Abstract

Purpose

In fire condition, the limiting temperature of a restrained steel beam depends on a few parameters, e.g. temperature distributions along and across the beam, beam’s load ratio and span length. The purpose of this study is to investigate the structural fire behaviour of axially restrained steel beams under different beam’s load ratios, taking into consideration the effect of the beam’s end connections configuration.

Design/methodology/approach

A three-dimensional finite element (FE) computer model has been developed to simulate the structural fire behaviour of axially restrained steel beams and their end connections. After successfully validating the developed model against the outcomes of the available large-size fire resistance experiments, the FE model has been used in a parametric study to investigate the beam’s load ratio effect on the behaviour of the axially restrained steel beams and their end connections.

Findings

The parametric study showed that increasing the beam loading level significantly increased the beam deflections at elevated temperatures; where, increasing the beam’s load ratio from 0.5 to 0.9 reduced the beam fire resistance by about 100 s. In contrast, decreasing the beam’s load ratio from 0.5 to 0.3 allowed the beam to easily achieve a 30-min fire resistance rating with no fire protection applied.

Originality/value

Experimental parametric studies are difficult to control in a laboratory setting and are also expensive and time consuming. Therefore, the reasonable accuracy of the validated FE model in reproducing the experimental fire behaviour of steel beams and their end connections makes it a very useful tool for both numerical and analytical studies.

Details

Journal of Structural Fire Engineering, vol. 9 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 27 July 2020

Anjaly Nair and Osama (Sam) Salem

At elevated temperatures, concrete undergoes changes in its mechanical and thermal properties, which mainly cause degradation of strength and eventually may lead to the failure of…

Abstract

Purpose

At elevated temperatures, concrete undergoes changes in its mechanical and thermal properties, which mainly cause degradation of strength and eventually may lead to the failure of the structure. Retrofitting is a desirable option to rehabilitate fire damaged concrete structures. However, to ensure safe reuse of fire-exposed buildings and to adopt proper retrofitting methods, it is essential to evaluate the residual load-bearing capacity of such fire-damaged reinforced concrete structures. The focus of the experimental study presented in this paper aims to investigate the fire performance of concrete columns exposed to a standard fire, and then evaluate its residual compressive strengths after fire exposure of different durations.

Design/methodology/approach

To effectively study the fire performance of such columns, eight identical 200 × 200 × 1,500-mm high reinforced concrete columns test specimens were subjected to two different fire exposure (1- and 2-h) while being loaded with two different load ratios (20% and 40% of the column ultimate design axial compressive load). In a subsequent stage and after complete cooling down, residual compressive strength capacity tests were performed on each fire exposed column.

Findings

Experimental results revealed that the columns never regain its original capacity after being subjected to a standard fire and that the residual compressive strength capacity dropped to almost 50% and 30% of its ambient temperature capacity for the columns exposed to 1- and 2-h fire durations, respectively. It was also noticed that, for the tested columns, the applied load ratio has much less effect on the column’s residual compressive strength compared to that of the fire duration.

Originality/value

According to the unique outcomes of this experimental study and, as the fire-damaged concrete columns possessed considerable residual compressive strength, in particular those exposed to shorter fire duration, it is anticipated that with proper retrofitting techniques such as fiber-reinforced polymers (FRP) wrapping, the fire-damaged columns can be rehabilitated to regain at least portion of its lost load-bearing capacities. Accordingly, the residual compressive resistance data obtained from this study can be effectively used but not directly to adopt optimal retrofitting strategies for such fire-damaged concrete columns, as well as to be used in validating numerical models that can be usefully used to account for the thermally-induced degradation of the mechanical properties of concrete material and ultimately predict the residual compressive strengths and deformations of concrete columns subjected to different load intensity ratios for various fire durations.

Details

Journal of Structural Fire Engineering, vol. 11 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 5 of 5