Search results

1 – 10 of 203
Article
Publication date: 22 September 2023

Xinmin Peng, Lumin He, Shuai Ma and Martin Lockett

An alliance portfolio can help latecomer firms to acquire the necessary knowledge and resources to catch up with market leaders. However, how latecomer firms construct an alliance…

Abstract

Purpose

An alliance portfolio can help latecomer firms to acquire the necessary knowledge and resources to catch up with market leaders. However, how latecomer firms construct an alliance portfolio in terms of the nature of windows of opportunity has not been fully analyzed. This paper aims to explore how latecomer firms can build appropriate coalitions according to the nature of the window of opportunity to achieve technological catch-up in different catch-up phases.

Design/methodology/approach

Based on a longitudinal case study from 1984 to 2018 of Sunny Group, now a leading manufacturer of integrated optical components and products, this paper explores the process of technological catch-up of latecomer firms building different types of alliance portfolio in different windows of opportunity.

Findings

This paper finds that there is a sequence when latecomers build an alliance portfolio in the process of catch-up. When the uncertainty of opportunity increases, the governance mechanism of the alliance portfolio will change from contractual to equity-based. Also, latecomer firms build market-dominated and technology-dominated alliance portfolios to overcome their market and technology disadvantages, respectively.

Originality/value

These conclusions not only enrich the theory of latecomer catch-up from the perspective of windows of opportunity but also expand research on alliance portfolio processes from a temporal perspective.

Details

Nankai Business Review International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-8749

Keywords

Article
Publication date: 29 February 2024

Heng Liu, Yonghua Lu, Haibo Yang, Lihua Zhou and Qiang Feng

In the context of fixed-wing aircraft wing assembly, there is a need for a rapid and precise measurement technique to determine the center distance between two double-hole…

Abstract

Purpose

In the context of fixed-wing aircraft wing assembly, there is a need for a rapid and precise measurement technique to determine the center distance between two double-hole components. This paper aims to propose an optical-based spatial point distance measurement technique using the spatial triangulation method. The purpose of this paper is to design a specialized measurement system, specifically a spherically mounted retroreflector nest (SMR nest), equipped with two laser displacement sensors and a rotary encoder as the core to achieve accurate distance measurements between the double holes.

Design/methodology/approach

To develop an efficient and accurate measurement system, the paper uses a combination of laser displacement sensors and a rotary encoder within the SMR nest. The system is designed, implemented and tested to meet the requirements of precise distance measurement. Software and hardware components have been developed and integrated for validation.

Findings

The optical-based distance measurement system achieves high precision at 0.04 mm and repeatability at 0.02 mm within a range of 412.084 mm to 1,590.591 mm. These results validate its suitability for efficient assembly processes, eliminating repetitive errors in aircraft wing assembly.

Originality/value

This paper proposes an optical-based spatial point distance measurement technique, as well as a unique design of a SMR nest and the introduction of two novel calibration techniques, all of which are validated by the developed software and hardware platform.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 7 September 2023

Vali Dalouji and Nasim Rahimi

In this paper, it can be seen from AFM images of the as-deposited ZnO and CZO films, and the particle size and shape are not clear, while by increasing annealing temperature, they…

Abstract

Purpose

In this paper, it can be seen from AFM images of the as-deposited ZnO and CZO films, and the particle size and shape are not clear, while by increasing annealing temperature, they become distinguishable. By increasing temperature to 600°C, ZnO and CZO, CAZO and aluminum-doped zinc oxide (AZO) films particles became almost spherical. Due to high content of Cu in CZO target, and of Al in AZO target which was 5% weight ratio, doping plays a great role in the subject. Therefore, the annealing processing strongly affect the size and the shape of nanoparticles.

Design/methodology/approach

In this paper, the authors tried to study, in detail, nobel optical characterizations of ZnO films doped by transition metals in different annealing temperature. The authors found that the values of skin depth, optical density, electron–phonon interaction, steepness parameter, band tail width, direct and indirect carriers transitions and the dissipation factor, free carriers density and roughness of films affect the optical properties, especially the optical absorptions of ZnO films doped by transition metals. Also these properties were affected by annealing temperatures. The authors also found that topography characterizations strongly were affected by these parameters.

Findings

The CZO films have maximum value of coordination number ß, with considering NC = 4, Za = 2, Ne = 8. The CZO films annealed at 500 °C have maximum value of optical density. The as-deposited CAZO films have maximum value of steepness parameters in about of 0.13 eV. The as-deposited AZO films have maximum value of dispersion energy Ed in about of 5.75 eV. Optical gap and disordering energy plots of films can be fitted by linear relationships Eg = 0.49 + 0.2 EU and Eg = 0.52 + 0.5 EU, respectively.

Originality/value

With considering Nc = 4, Za = 2, Ne = 8 for ZnO films, coordination number ß has maximum value of 0.198. CZO nanocomposites films annealed at 500°C have maximum value of optical density. Different linear fitting of ln (α) for films were obtained as y = Ax + B where 5<A < 17 and 5<B < 12. As-deposited CAZO nanocomposites films have minimum value of electron phonon interaction in about of 4.91 eV. Optical gap and disordering energy plots can be fitted by linear relationships Eg = 0.49 + 0.2 EU and Eg = 0.52 + 0.5 EU for as-deposited films and films annealed at 500°C, respectively. Steepness parameters of as-deposited CAZO nanocomposites films have maximum value of 0.13 eV. Dispersion energy Ed for as-deposited AZO nanocomposites films has maximum value of 5.75 eV.

Details

Soldering & Surface Mount Technology, vol. 35 no. 5
Type: Research Article
ISSN: 0954-0911

Keywords

Book part
Publication date: 31 January 2024

Deirdre Feeney

This chapter details a practice-based investigation of a 19th-century astronomical device known as ‘Janssen’s apparatus’. It questions traditional narratives of linear…

Abstract

This chapter details a practice-based investigation of a 19th-century astronomical device known as ‘Janssen’s apparatus’. It questions traditional narratives of linear technological advancement and ‘sole inventor’ to reframe the historical artefact as a site which makes visible a network of technological knowledge interconnecting astronomy and visual culture. Approached from this perspective, the Janssen artefact is reframed as an ‘intersite of knowledge’, exploring how the various know-how contained within the device is located across disciplines rather than within a single field. Originally developed to calculate the Astronomical Unit during the 1874 Transit of Venus, Janssen’s apparatus failed in its endeavour as a measuring instrument, but its motion mechanism was successfully adapted into early cinema technologies. This chapter applies praxis through the development of a prototype artwork and the concept of ‘techne’ as speculative means of understanding how this mechanism was transferred from astronomy to the Western cultural realm. It proposes that the development of the apparatus was partially gleaned from moving image techniques already in use within 19th-century visual culture. The development of the prototype artwork is discussed in relation to the specific timing mechanism of the Janssen apparatus and how it establishes its own ‘intersite of knowledge’ relevant to its contemporary context. Finally, this chapter elaborates on how witnessing the Janssen mechanism in motion provided unique insight and how creating a dialogue between historical and contemporary apparatus facilitates a reconsideration of how galleries, libraries, archives, and museums [GLAM] and other host institutions that contain artefacts might share their hidden stories.

Details

Data Curation and Information Systems Design from Australasia: Implications for Cataloguing of Vernacular Knowledge in Galleries, Libraries, Archives, and Museums
Type: Book
ISBN: 978-1-80455-615-3

Keywords

Article
Publication date: 15 April 2024

Majid Monajjemi and Fatemeh Mollaamin

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated…

Abstract

Purpose

Recently, powerful instruments for biomedical engineering research studies, including disease modeling, drug designing and nano-drug delivering, have been extremely investigated by researchers. Particularly, investigation in various microfluidics techniques and novel biomedical approaches for microfluidic-based substrate have progressed in recent years, and therefore, various cell culture platforms have been manufactured for these types of approaches. These microinstruments, known as tissue chip platforms, mimic in vivo living tissue and exhibit more physiologically similar vitro models of human tissues. Using lab-on-a-chip technologies in vitro cell culturing quickly caused in optimized systems of tissues compared to static culture. These chipsets prepare cell culture media to mimic physiological reactions and behaviors.

Design/methodology/approach

The authors used the application of lab chip instruments as a versatile tool for point of health-care (PHC) applications, and the authors applied a current progress in various platforms toward biochip DNA sensors as an alternative to the general bio electrochemical sensors. Basically, optical sensing is related to the intercalation between glass surfaces containing biomolecules with fluorescence and, subsequently, its reflected light that arises from the characteristics of the chemical agents. Recently, various techniques using optical fiber have progressed significantly, and researchers apply highlighted remarks and future perspectives of these kinds of platforms for PHC applications.

Findings

The authors assembled several microfluidic chips through cell culture and immune-fluorescent, as well as using microscopy measurement and image analysis for RNA sequencing. By this work, several chip assemblies were fabricated, and the application of the fluidic routing mechanism enables us to provide chip-to-chip communication with a variety of tissue-on-a-chip. By lab-on-a-chip techniques, the authors exhibited that coating the cell membrane via poly-dopamine and collagen was the best cell membrane coating due to the monolayer growth and differentiation of the cell types during the differentiation period. The authors found the artificial membrane, through coating with Collagen-A, has improved the growth of mouse podocytes cells-5 compared with the fibronectin-coated membrane.

Originality/value

The authors could distinguish the differences across the patient cohort when they used a collagen-coated microfluidic chip. For instance, von Willebrand factor, a blood glycoprotein that promotes hemostasis, can be identified and measured through these type-coated microfluidic chips.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 28 November 2023

Xindang He, Run Zhou, Zheyuan Liu, Suliang Yang, Ke Chen and Lei Li

The purpose of this paper is to provide a comprehensive review of a non-contact full-field optical measurement technique known as digital image correlation (DIC).

Abstract

Purpose

The purpose of this paper is to provide a comprehensive review of a non-contact full-field optical measurement technique known as digital image correlation (DIC).

Design/methodology/approach

The approach of this review paper is to introduce the research pertaining to DIC. It comprehensively covers crucial facets including its principles, historical development, core challenges, current research status and practical applications. Additionally, it delves into unresolved issues and outlines future research objectives.

Findings

The findings of this review encompass essential aspects of DIC, including core issues like the subpixel registration algorithm, camera calibration, measurement of surface deformation in 3D complex structures and applications in ultra-high-temperature settings. Additionally, the review presents the prevailing strategies for addressing these challenges, the most recent advancements in DIC applications across quasi-static, dynamic, ultra-high-temperature, large-scale and micro-scale engineering domains, along with key directions for future research endeavors.

Originality/value

This review holds a substantial value as it furnishes a comprehensive and in-depth introduction to DIC, while also spotlighting its prospective applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 12 April 2024

Nibu Babu Thomas, Lekshmi P. Kumar, Jiya James and Nibu A. George

Nanosensors have a wide range of applications because of their high sensitivity, selectivity and specificity. In the past decade, extensive and pervasive research related to…

Abstract

Purpose

Nanosensors have a wide range of applications because of their high sensitivity, selectivity and specificity. In the past decade, extensive and pervasive research related to nanosensors has led to significant progress in diverse fields, such as biomedicine, environmental monitoring and industrial process control. This led to better and more efficient detection and monitoring of physical and chemical properties at better resolution, opening new horizons in the development of novel technologies and applications for improved human health, environment protection, enhanced industrial processes, etc.

Design/methodology/approach

In this paper, the authors discuss the application of citation network analysis in the field of nanosensor research and development. Cluster analysis was carried out using papers published in the field of nanomaterial-based sensor research, and an in-depth analysis was carried out to identify significant clusters. The purpose of this study is to provide researchers to identify a pathway to the emerging areas in the field of nanosensor research. The authors have illustrated the knowledge base, knowledge domain and knowledge progression of nanosensor research using the citation analysis based on 3,636 Science Citation Index papers published during the period 2011 to 2021.

Findings

Among these papers, the bibliographic study identified 809 significant research publications, 11 clusters, 556 research sector keywords, 1,296 main authors, 139 referenced authors, 63 nations, 206 organizations and 42 journals. The authors have identified single quantum dot (QD)-based nanosensor for biological applications, carbon dot-based nanosensors, self-powered triboelectric nanogenerator-based nanosensor and genetically encoded nanosensor as the significant research hotspots that came to the fore in recent years. The future trend in nanosensor research might focus on the development of efficient and cost-effective designs for the detection of numerous environmental pollutants and biological molecules using mesostructured materials and QDs. It is also possible to optimize the detection methods using theoretical models, and generalized gradient approximation has great scope in sensor development.

Research limitations/implications

The future trend in nanosensor research might focus on the development of efficient and cost-effective designs for the detection of numerous environmental pollutants and biological molecules using mesostructured materials and QDs. It is also possible to optimize the detection methods using theoretical models, and generalized gradient approximation has great scope in sensor development.

Originality/value

This is a novel bibliometric analysis in the area of “nanomaterial based sensor,” which is carried out in CiteSpace software.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 December 2023

İdris Tuğrul Gülenç, Mingwen Bai, Ria L. Mitchell, Iain Todd and Beverley J. Inkson

Current methods for the preparation of composite powder feedstock for selective laser melting (SLM) rely on costly nanoparticles or yield inconsistent powder morphology. This…

Abstract

Purpose

Current methods for the preparation of composite powder feedstock for selective laser melting (SLM) rely on costly nanoparticles or yield inconsistent powder morphology. This study aims to develop a cost-effective Ti6Al4V-carbon feedstock, which preserves the parent Ti6Al4V particle’s flowability, and produces in situ TiC-reinforced Ti6Al4V composites with superior traits.

Design/methodology/approach

Ti6Al4V particles were directly mixed with graphite flakes in a planetary ball mill. This composite powder feedstock was used to manufacture in situ TiC-Ti6Al4V composites using various energy densities. Relative porosity, microstructure and hardness of the composites were evaluated for different SLM processing parameters.

Findings

Homogeneously carbon-coated Ti6Al4V particles were produced by direct mixing. After SLM processing, in situ grown 100–500 nm size TiC nanoparticles were distributed within the α-martensite Ti6Al4V matrix. The formation of TiC particles refines the Ti6Al4V β grain size. Relative density varied between 96.4% and 99.5% depending on the processing parameters. Hatch distance, exposure time and point distance were all effective on relative porosity change, whereas only exposure time and point distance were effective on hardness change.

Originality/value

This work introduces a novel, cost-effective powder feedstock preparation method for SLM manufacture of Ti6Al4V-TiC composites. The in situ SLM composites achieved in this study have high relative density values, well-dispersed TiC nanoparticles and increased hardness. In addition, the feedstock preparation method can be readily adapted for various matrix and reinforcement materials in future studies.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 March 2023

Mathew Gregory Tagwai, Onimisi Abdullateef Jimoh, Shaib Abdulazeez Shehu and Hareyani Zabidi

This paper aims to give an oversight of what is being done by researchers in GIS and remote sensing (field) to explore minerals. The main objective of this review is to explore…

Abstract

Purpose

This paper aims to give an oversight of what is being done by researchers in GIS and remote sensing (field) to explore minerals. The main objective of this review is to explore how GIS and remote sensing have been beneficial in identifying mineral deposits for easier and cost-effective mining.

Design/methodology/approach

The approach of this research used Web of Science to generate a database of published articles on the application of GIS and remote sensing techniques for mineral exploration. The literature was further digested, noting the main findings, adopted method, illustration and research scales.

Findings

When applied alone, each technique seems effective, but it is important to know that combining different methods is more effective in identifying ore deposits.

Originality/value

This paper also examined and provided possible solutions to both current and future perspective issues relating to the application of GIS and remote sensing to mineral exploration. The authors believe that the conclusions and recommendations drawn from case studies and literature review will be of great importance to geoscientists and policymakers.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 25 January 2023

Hui Xu, Junjie Zhang, Hui Sun, Miao Qi and Jun Kong

Attention is one of the most important factors to affect the academic performance of students. Effectively analyzing students' attention in class can promote teachers' precise…

Abstract

Purpose

Attention is one of the most important factors to affect the academic performance of students. Effectively analyzing students' attention in class can promote teachers' precise teaching and students' personalized learning. To intelligently analyze the students' attention in classroom from the first-person perspective, this paper proposes a fusion model based on gaze tracking and object detection. In particular, the proposed attention analysis model does not depend on any smart equipment.

Design/methodology/approach

Given a first-person view video of students' learning, the authors first estimate the gazing point by using the deep space–time neural network. Second, single shot multi-box detector and fast segmentation convolutional neural network are comparatively adopted to accurately detect the objects in the video. Third, they predict the gazing objects by combining the results of gazing point estimation and object detection. Finally, the personalized attention of students is analyzed based on the predicted gazing objects and the measurable eye movement criteria.

Findings

A large number of experiments are carried out on a public database and a new dataset that is built in a real classroom. The experimental results show that the proposed model not only can accurately track the students' gazing trajectory and effectively analyze the fluctuation of attention of the individual student and all students but also provide a valuable reference to evaluate the process of learning of students.

Originality/value

The contributions of this paper can be summarized as follows. The analysis of students' attention plays an important role in improving teaching quality and student achievement. However, there is little research on how to automatically and intelligently analyze students' attention. To alleviate this problem, this paper focuses on analyzing students' attention by gaze tracking and object detection in classroom teaching, which is significant for practical application in the field of education. The authors proposed an effectively intelligent fusion model based on the deep neural network, which mainly includes the gazing point module and the object detection module, to analyze students' attention in classroom teaching instead of relying on any smart wearable device. They introduce the attention mechanism into the gazing point module to improve the performance of gazing point detection and perform some comparison experiments on the public dataset to prove that the gazing point module can achieve better performance. They associate the eye movement criteria with visual gaze to get quantifiable objective data for students' attention analysis, which can provide a valuable basis to evaluate the learning process of students, provide useful learning information of students for both parents and teachers and support the development of individualized teaching. They built a new database that contains the first-person view videos of 11 subjects in a real classroom and employ it to evaluate the effectiveness and feasibility of the proposed model.

Details

Data Technologies and Applications, vol. 57 no. 5
Type: Research Article
ISSN: 2514-9288

Keywords

1 – 10 of 203