Search results

1 – 10 of 29
Article
Publication date: 16 November 2012

Bo Wang, Zichen Deng, Kai Zhang and Jiaxi Zhou

The aim of this paper is to study the dynamic vibrations of embedded double‐walled carbon nanotubes (DWCNTs) subjected to a moving harmonic load with simply supported boundary…

Abstract

Purpose

The aim of this paper is to study the dynamic vibrations of embedded double‐walled carbon nanotubes (DWCNTs) subjected to a moving harmonic load with simply supported boundary conditions.

Design/methodology/approach

The model of DWCNTs is considered as an Euler‐Bernoulli beam with waviness along the length, which is more accurate than the straight beam in previous works. Based on the nonlocal beam theory, the governing equations of motion are derived by using the Hamilton's principle, and then the separation of variables is carried out by the Galerkin approach, leading to two second‐order ordinary differential equations (ODEs).

Findings

The influences of the nonlocal parameter, the amplitude of the waviness, the surrounding elastic medium, the material length scale, load velocity and van der Waals force on the nonlinear vibration of DWCNTs are important.

Originality/value

The dynamic responses of DWCNTs are obtained by using the precise integrator method to ordinary differential equations.

Article
Publication date: 21 June 2013

Xiao‐Jian Xu and Zi‐Chen Deng

The purpose of this paper is to study the buckling and the vibration of the beam induced by atom/molecule adsorption using the nonlocal Euler‐Bernoulli beam model with initial…

Abstract

Purpose

The purpose of this paper is to study the buckling and the vibration of the beam induced by atom/molecule adsorption using the nonlocal Euler‐Bernoulli beam model with initial axial stress.

Design/methodology/approach

The nonlocal parameter associated with adsorbed mass and bending rigidity variations of the beam induced by adsorbates are taken into account, and the buckling and dynamic behaviors are obtained via the Hamilton's principle, in which the potential energy between adsorbates and surfaces of the beam, the bending energy, the external work and the kinetic energy are summed as the Lagrangian function.

Findings

The results show that, for both buckling and resonant frequency, the nonlocal effect should be considered when the beam scales down to several hundreds of nanometres, especially for higher mode numbers.

Originality/value

The present paper gives the exact expressions for the buckling and resonant frequency of a simple‐supported nonlocal beam with initial axial stress. Different from previous works, the mass increasing and bending rigidity of the beam are found size‐dependent (nonlocal effect), resulting in possible different static and dynamic behaviors of the beam when atom/molecular adsorption occurs. The exact expressions obtained for the buckling and resonant frequency may be helpful to the design and application of micro‐ and nanobeam‐based sensors/resonators.

Details

Multidiscipline Modeling in Materials and Structures, vol. 9 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 19 August 2019

Amir Norouzzadeh, Mohammad Faraji Oskouie, Reza Ansari and Hessam Rouhi

This paper aims to combine Eringen’s micromorphic and nonlocal theories and thus develop a comprehensive size-dependent beam model capable of capturing the effects of…

Abstract

Purpose

This paper aims to combine Eringen’s micromorphic and nonlocal theories and thus develop a comprehensive size-dependent beam model capable of capturing the effects of micro-rotational/stretch/shear degrees of freedom of material particles and nonlocality simultaneously.

Design/methodology/approach

To consider nonlocal influences, both integral (original) and differential versions of Eringen’s nonlocal theory are used. Accordingly, integral nonlocal-micromorphic and differential nonlocal-micromorphic beam models are formulated using matrix-vector relations, which are suitable for implementing in numerical approaches. A finite element (FE) formulation is also provided to solve the obtained equilibrium equations in the variational form. Timoshenko micro-/nano-beams with different boundary conditions are selected as the problem under study whose static bending is addressed.

Findings

It was shown that the paradox related to the clamped-free beam is resolved by the present integral nonlocal-micromorphic model. It was also indicated that the nonlocal effect captured by the integral model is more pronounced than that by its differential counterpart. Moreover, it was revealed that by the present approach, the softening and hardening effects, respectively, originated from the nonlocal and micromorphic theories can be considered simultaneously.

Originality/value

Developing a hybrid size-dependent Timoshenko beam model including micromorphic and nonlocal effects. Considering the nonlocal effect based on both Eringen’s integral and differential models proposing an FE approach to solve the bending problem, and resolving the paradox related to nanocantilever.

Details

Engineering Computations, vol. 37 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 31 January 2020

Mahdi Shayanmehr and Omid Basiri

In this paper, the important aspects of vibration analysis of carbon nanotubes (CNTs) as nano-resonators are studied. This study has covered the important nonlinear phenomena such…

Abstract

Purpose

In this paper, the important aspects of vibration analysis of carbon nanotubes (CNTs) as nano-resonators are studied. This study has covered the important nonlinear phenomena such as jump super-harmonic and chaotic behavior. CNT is modeled by using the modified nonlocal theory (MNT).

Design/methodology/approach

In previous research studies, the effects of CNT’s rotary inertia, stiffness and shear modulus of the medium were neglected. So by considering these terms in MNT, a comprehensive model of vibrational behavior of carbon nanotube as a nanosensor is presented. The nanotube is modeled as a nonlocal nonlinear beam. The first eigenmode of an undamped simply supported beam is used to extract the nonlinear equation of CNT. Harmonic balance method is used to solve the equation, while to study its super-harmonic behavior, higher-order harmonic terms were used.

Findings

In light of frequency response equation, jump phenomenon and chaotic behavior of the nanotube with respect to the amplitude of excitation are investigated. Also in each section of the study, the effects of elastic medium and nonlocal parameters on the vibration behavior of nanotube are investigated. Furthermore, parts of the results in linear and nonlinear cases were compared with results of other references.

Originality/value

The present modification of the nonlocal theory is so important and useful for accurate investigation of the vibrational behavior of nano structures such as a nano-resonator.

Details

World Journal of Engineering, vol. 17 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 October 2018

Amir Norouzzadeh, Reza Ansari and Hessam Rouhi

It has been revealed that application of the differential form of Eringen’s nonlocal elasticity theory to some cases (e.g. cantilevers) leads to paradoxical results, and recourse…

Abstract

Purpose

It has been revealed that application of the differential form of Eringen’s nonlocal elasticity theory to some cases (e.g. cantilevers) leads to paradoxical results, and recourse must be made to the integral version of Eringen’s nonlocal model. The purpose of this paper, within the framework of integral form of Eringen’s nonlocal theory, is to study the bending behavior of nanoscale plates with various boundary conditions using the isogeometric analysis (IGA).

Design/methodology/approach

The shear deformation effect is taken into account according to the Mindlin plate theory, and the minimum total potential energy principle is utilized in order to derive the governing equations. The relations are obtained in the matrix-vector form which can be easily employed in IGA or finite element analysis. For the comparison purpose, the governing equations are also derived based on the differential nonlocal model and are then solved via IGA. Comparisons are made between the predictions of integral nonlocal model, differential nonlocal model and local (classical) model.

Findings

The bending analysis of nanoplates under some kinds of edge supports indicates that using the differential model leads to paradoxical results (decreasing the maximum deflection with increasing the nonlocal parameter), whereas the results of integral model are consistent.

Originality/value

A new nonlocal formulation is developed for the IGA of Mindlin nanoplates. The nonlocal effects are captured based on the integral model of nonlocal elasticity. The formulation is developed in matrix-vector form which can be readily used in finite element method. Comparisons are made between the results of differential and integral models for the bending problem. The proposed integral model is capable of resolving the paradox appeared in the results of differential model.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 March 2018

Maria Anna De Rosa, Maria Lippiello and Stefania Tomasiello

The purpose of the present paper is to investigate the nonconservative instability of a single-walled carbon nanotube (SWCNT) with an added mass through nonlocal theories. The…

Abstract

Purpose

The purpose of the present paper is to investigate the nonconservative instability of a single-walled carbon nanotube (SWCNT) with an added mass through nonlocal theories. The governing equations are discretized by means of the differential quadrature (DQ) rules, as introduced by Bellman and Casti. DQ rules have been largely used in engineering and applied sciences. Recently, they were applied to enhance some numerical schemes, such as step-by-step integration schemes and Picard-like numerical schemes.

Design/methodology/approach

In the present paper, the DQ rules are used to investigate the nonconservative instability of a SWCNT through nonlocal theories.

Findings

To show the sensitivity of the SWCNT to the values of added mass and the influence of nonlocal parameter on the fundamental frequencies values, some numerical examples have been performed and discussed. Yet, the effect of the different boundary conditions on the instability behaviour has been investigated. The validity of the present model has been confirmed by comparing some results against the ones available in literature.

Originality/value

Applying the nonlocal elasticity theory, this paper presents a re-formulation of Hamilton’s principle for the free vibration analysis of a uniform Euler–Bernoulli nanobeam. The main purpose of this paper is to investigate the free vibration response of an SWCNT with attached mass and for various values of small scale effects.

Details

Engineering Computations, vol. 35 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 November 2020

Rajendran Selvamani, M. Mahaveer Sree Jayan and Farzad Ebrahimi

The purpose of this paper is concerned with the study of nonlinear ultrasonic waves in a magneto-flexo-thermo (MFT) elastic armchair single-walled carbon nanotube (ASWCNT) resting…

Abstract

Purpose

The purpose of this paper is concerned with the study of nonlinear ultrasonic waves in a magneto-flexo-thermo (MFT) elastic armchair single-walled carbon nanotube (ASWCNT) resting on polymer matrix.

Design/methodology/approach

A mathematical model is developed for the analytical study of nonlinear ultrasonic waves in a MFT elastic armchair single walled carbon nanotube rested on polymer matrix using Euler beam theory. The analytical formulation is developed based on Eringen’s nonlocal elasticity theory to account small scale effect. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been analysed numerically by using the nonlinear foundations supported by Winkler-Pasternak model. The solution is obtained by ultrasonic wave dispersion relations.

Findings

From the literature survey, it is evident that the analytical formulation of nonlinear ultrasonic waves in an MFT elastic ASWCNT embedded on polymer matrix is not discussed by any researchers. So, in this paper the analytical solutions of nonlinear ultrasonic waves in an MFT elastic ASWCNT embedded on polymer matrix are studied. Parametric studies is carried out to scrutinize the influence of the nonlocal scaling, magneto-electro-mechanical loadings, foundation parameters, various boundary condition and length on the dimensionless frequency of nanotube. It is noticed that the boundary conditions, nonlocal parameter and tube geometrical parameters have significant effects on dimensionless frequency of nanotubes.

Originality/value

This paper contributes the analytical model to find the solution of nonlinear ultrasonic waves in an MFT elastic ASWCNT embedded on polymer matrix. It is observed that the increase in the foundation constants raises the stiffness of the medium and the structure is able to attain higher frequency once the edge condition is C-C followed by S-S. Further, it is noticed that the natural frequency is arrived below 1% in both local and nonlocal boundary conditions in the presence of temperature coefficients. Also, it is found that the density and Poisson ratio variation affects the natural frequency with below 2%. The results presented in this study can provide mechanism for the study and design of the nano devices such as component of nano oscillators, micro wave absorbing, nano-electron technology and nano-electro--magneto-mechanical systems that make use of the wave propagation properties of ASWCNTs embedded on polymer matrix.

Details

World Journal of Engineering, vol. 18 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 25 June 2019

Mohammad Hashemian, Amir Homayoun Vaez and Davood Toghraie

The dynamic stability of nano-tubes is an important issue in engineering applications. Dynamic stability of anti-symmetric coupled-carbon nanotubes (C-CNTs)-systems in thermal…

Abstract

Purpose

The dynamic stability of nano-tubes is an important issue in engineering applications. Dynamic stability of anti-symmetric coupled-carbon nanotubes (C-CNTs)-systems in thermal environment is presented in this paper. In this system, the top and bottom CNTs are subjected to axial harmonic load and action of the viscous fluid, respectively.

Design/methodology/approach

The coupling and surrounding mediums of the CNTs are simulated by visco-Pasternak foundation containing the spring, shear and damper coefficients. Based on the Timoshenko beam theory and Hamilton’s principle, the coupled motion equations are derived considering size effects using Eringen’s nonlocal theory. Using the exact solution in conjunction with Bolotin’s method, the dynamic instability region (DIR) of the coupled structure is obtained. The effects of various parameters such as small scale parameter, Knudsen number, fluid velocity, static load factor, temperature change, surrounding medium and nanotubes aspect ratio are shown on the DIR of the coupled system.

Findings

Results indicate that considering parameters such as small scale effects, static load factor, Knudsen number and fluid velocity shifts the DIR of C-CNTs to a lower frequency zone.

Originality/value

To the best of our knowledge, analyses of anti-symmetric coupled CNTs have not received enough attentions so far. In order to optimize the nanostructures designing, the main purpose of the present paper is to investigate nonlocal dynamic stability of CNTs subjected to axial harmonic load coupled with CNTs conveying fluid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 February 2019

Soheil Oveissi, Davood Toghraie, S. Ali Eftekhari and Ali J. Chamkha

This study aims to study the transverse vibration and instabilities of the fluid-conveying single-walled carbon nanotubes (CNTs). To this purpose, the Euler–Bernoulli beam model…

Abstract

Purpose

This study aims to study the transverse vibration and instabilities of the fluid-conveying single-walled carbon nanotubes (CNTs). To this purpose, the Euler–Bernoulli beam model is used. Also, the surface effects, small-size effects of the both fluid and structure and two different elastic mediums viscoelastic and Pasternak elastic are investigated.

Design/methodology/approach

To consider the nano-scale for the CNT, the strain-inertia gradient theory is used and to solve the governing equation of motion for the system, the Galerkin’s method is used. The effect of the flow velocity, aspect ratio, characteristic lengths of the mentioned theory, effects of Knudsen number and effects of the Winkler, the Pasternak elastic and the viscoelastic medium on the frequencies and stabilities of the system are studied. The effects of the above parameters on the vibrational behavior are investigated both separately and simultaneously.

Findings

The results show that the critical flow velocity value is increased as the aspect ratio, characteristic lengths, Winkler modulus, shear and damping factors increase. Also, the critical flow velocity is increased by considering the surface effects. In addition, the consequence of increase in the nano-flow-size effects (Knudsen number) is decreasing the critical flow velocity. Moreover, it can be observed that the effect of the shear factor on increasing the critical flow velocity is different from the rest of parameters.

Originality/value

Use of Timoshenko and modified couple stress theories and taking into account Von-Karman expressions for investigating the nonlinear vibrations of triple-walled CNTs buried within Pasternak foundation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 October 2018

Mohammad Malikan and Van Bac Nguyen

This paper aims to present a new one-variable first-order shear deformation theory (OVFSDT) using nonlocal elasticity concepts for buckling of graphene sheets.

Abstract

Purpose

This paper aims to present a new one-variable first-order shear deformation theory (OVFSDT) using nonlocal elasticity concepts for buckling of graphene sheets.

Design/methodology/approach

The FSDT had errors in its assumptions owing to the assumption of constant shear stress distribution along the thickness of the plate, even though by using the shear correction factor (SCF), it has been slightly corrected, the errors have been remained owing to the fact that the exact value of SCF has not already been accurately identified. By using two-variable first-order shear deformation theories, these errors decreased further by removing the SCF. To consider nanoscale effects on the plate, Eringen’s nonlocal elasticity theory was adopted. The critical buckling loads were computed by Navier’s approach. The obtained numerical results were then compared with previous studies’ results using molecular dynamics simulations and other plate theories for validation which also showed the accuracy and simplicity of the proposed theory.

Findings

In comparing the biaxial buckling results of the proposed theory with the two-variable shear deformation theories and exact results, it revealed that the two-variable plate theories were not appropriate for the investigation of asymmetrical analyses.

Originality/value

A formulation for FSDT was innovated by reconsidering its errors to improve the FSDT for investigation of mechanical behavior of nanoplates.

Details

World Journal of Engineering, vol. 15 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 29