Search results

1 – 10 of 15
Article
Publication date: 5 October 2018

Amir Norouzzadeh, Reza Ansari and Hessam Rouhi

It has been revealed that application of the differential form of Eringen’s nonlocal elasticity theory to some cases (e.g. cantilevers) leads to paradoxical results, and recourse…

Abstract

Purpose

It has been revealed that application of the differential form of Eringen’s nonlocal elasticity theory to some cases (e.g. cantilevers) leads to paradoxical results, and recourse must be made to the integral version of Eringen’s nonlocal model. The purpose of this paper, within the framework of integral form of Eringen’s nonlocal theory, is to study the bending behavior of nanoscale plates with various boundary conditions using the isogeometric analysis (IGA).

Design/methodology/approach

The shear deformation effect is taken into account according to the Mindlin plate theory, and the minimum total potential energy principle is utilized in order to derive the governing equations. The relations are obtained in the matrix-vector form which can be easily employed in IGA or finite element analysis. For the comparison purpose, the governing equations are also derived based on the differential nonlocal model and are then solved via IGA. Comparisons are made between the predictions of integral nonlocal model, differential nonlocal model and local (classical) model.

Findings

The bending analysis of nanoplates under some kinds of edge supports indicates that using the differential model leads to paradoxical results (decreasing the maximum deflection with increasing the nonlocal parameter), whereas the results of integral model are consistent.

Originality/value

A new nonlocal formulation is developed for the IGA of Mindlin nanoplates. The nonlocal effects are captured based on the integral model of nonlocal elasticity. The formulation is developed in matrix-vector form which can be readily used in finite element method. Comparisons are made between the results of differential and integral models for the bending problem. The proposed integral model is capable of resolving the paradox appeared in the results of differential model.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 19 August 2019

Amir Norouzzadeh, Mohammad Faraji Oskouie, Reza Ansari and Hessam Rouhi

This paper aims to combine Eringen’s micromorphic and nonlocal theories and thus develop a comprehensive size-dependent beam model capable of capturing the effects of…

Abstract

Purpose

This paper aims to combine Eringen’s micromorphic and nonlocal theories and thus develop a comprehensive size-dependent beam model capable of capturing the effects of micro-rotational/stretch/shear degrees of freedom of material particles and nonlocality simultaneously.

Design/methodology/approach

To consider nonlocal influences, both integral (original) and differential versions of Eringen’s nonlocal theory are used. Accordingly, integral nonlocal-micromorphic and differential nonlocal-micromorphic beam models are formulated using matrix-vector relations, which are suitable for implementing in numerical approaches. A finite element (FE) formulation is also provided to solve the obtained equilibrium equations in the variational form. Timoshenko micro-/nano-beams with different boundary conditions are selected as the problem under study whose static bending is addressed.

Findings

It was shown that the paradox related to the clamped-free beam is resolved by the present integral nonlocal-micromorphic model. It was also indicated that the nonlocal effect captured by the integral model is more pronounced than that by its differential counterpart. Moreover, it was revealed that by the present approach, the softening and hardening effects, respectively, originated from the nonlocal and micromorphic theories can be considered simultaneously.

Originality/value

Developing a hybrid size-dependent Timoshenko beam model including micromorphic and nonlocal effects. Considering the nonlocal effect based on both Eringen’s integral and differential models proposing an FE approach to solve the bending problem, and resolving the paradox related to nanocantilever.

Details

Engineering Computations, vol. 37 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 November 2020

Rajendran Selvamani, M. Mahaveer Sree Jayan and Farzad Ebrahimi

The purpose of this paper is concerned with the study of nonlinear ultrasonic waves in a magneto-flexo-thermo (MFT) elastic armchair single-walled carbon nanotube (ASWCNT) resting…

Abstract

Purpose

The purpose of this paper is concerned with the study of nonlinear ultrasonic waves in a magneto-flexo-thermo (MFT) elastic armchair single-walled carbon nanotube (ASWCNT) resting on polymer matrix.

Design/methodology/approach

A mathematical model is developed for the analytical study of nonlinear ultrasonic waves in a MFT elastic armchair single walled carbon nanotube rested on polymer matrix using Euler beam theory. The analytical formulation is developed based on Eringen’s nonlocal elasticity theory to account small scale effect. After developing the formal solution of the mathematical model consisting of partial differential equations, the frequency equations have been analysed numerically by using the nonlinear foundations supported by Winkler-Pasternak model. The solution is obtained by ultrasonic wave dispersion relations.

Findings

From the literature survey, it is evident that the analytical formulation of nonlinear ultrasonic waves in an MFT elastic ASWCNT embedded on polymer matrix is not discussed by any researchers. So, in this paper the analytical solutions of nonlinear ultrasonic waves in an MFT elastic ASWCNT embedded on polymer matrix are studied. Parametric studies is carried out to scrutinize the influence of the nonlocal scaling, magneto-electro-mechanical loadings, foundation parameters, various boundary condition and length on the dimensionless frequency of nanotube. It is noticed that the boundary conditions, nonlocal parameter and tube geometrical parameters have significant effects on dimensionless frequency of nanotubes.

Originality/value

This paper contributes the analytical model to find the solution of nonlinear ultrasonic waves in an MFT elastic ASWCNT embedded on polymer matrix. It is observed that the increase in the foundation constants raises the stiffness of the medium and the structure is able to attain higher frequency once the edge condition is C-C followed by S-S. Further, it is noticed that the natural frequency is arrived below 1% in both local and nonlocal boundary conditions in the presence of temperature coefficients. Also, it is found that the density and Poisson ratio variation affects the natural frequency with below 2%. The results presented in this study can provide mechanism for the study and design of the nano devices such as component of nano oscillators, micro wave absorbing, nano-electron technology and nano-electro--magneto-mechanical systems that make use of the wave propagation properties of ASWCNTs embedded on polymer matrix.

Details

World Journal of Engineering, vol. 18 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 October 2018

Mohammad Malikan and Van Bac Nguyen

This paper aims to present a new one-variable first-order shear deformation theory (OVFSDT) using nonlocal elasticity concepts for buckling of graphene sheets.

Abstract

Purpose

This paper aims to present a new one-variable first-order shear deformation theory (OVFSDT) using nonlocal elasticity concepts for buckling of graphene sheets.

Design/methodology/approach

The FSDT had errors in its assumptions owing to the assumption of constant shear stress distribution along the thickness of the plate, even though by using the shear correction factor (SCF), it has been slightly corrected, the errors have been remained owing to the fact that the exact value of SCF has not already been accurately identified. By using two-variable first-order shear deformation theories, these errors decreased further by removing the SCF. To consider nanoscale effects on the plate, Eringen’s nonlocal elasticity theory was adopted. The critical buckling loads were computed by Navier’s approach. The obtained numerical results were then compared with previous studies’ results using molecular dynamics simulations and other plate theories for validation which also showed the accuracy and simplicity of the proposed theory.

Findings

In comparing the biaxial buckling results of the proposed theory with the two-variable shear deformation theories and exact results, it revealed that the two-variable plate theories were not appropriate for the investigation of asymmetrical analyses.

Originality/value

A formulation for FSDT was innovated by reconsidering its errors to improve the FSDT for investigation of mechanical behavior of nanoplates.

Details

World Journal of Engineering, vol. 15 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 July 2023

Rachaita Dutta, Soumik Das, Shishir Gupta, Aditi Singh and Harsh Chaudhary

The purpose of this study is to analyze the thermo-diffusion process in a semi-infinite nonlocal fiber-reinforced double porous thermoelastic diffusive material with voids…

Abstract

Purpose

The purpose of this study is to analyze the thermo-diffusion process in a semi-infinite nonlocal fiber-reinforced double porous thermoelastic diffusive material with voids (FRDPTDMWV) in light of the fractional-order Lord–Shulman thermo-elasto-diffusion (LSTED) model. By virtue of Eringen’s nonlocal elasticity theory, the governing equations for the considered material are developed. The free surface of the substrate is governed by the inclined mechanical load and thermal and chemical shocks.

Design/methodology/approach

With the aid of the normal mode technique, the solutions of the nondimensional coupled governing equations have been obtained.

Findings

The expressions of field variables are obtained analytically. By using MATHEMATICA software, various graphical implementations are presented to describe the impacts of angle of inclination, fractional-order and nonlocality parameters. The present model is also validated on the basis of some comparative studies with some preestablished cases.

Originality/value

As observed from the literature survey, many different studies have been carried out by taking into account the deformation analysis in nonlocal double porous thermoelastic material structures and thermo-mechanical interaction in fiber-reinforced medium under fractional-order thermoelasticity theories. However, to the best of the authors’ knowledge, no research emphasizing the thermo-elasto-diffusive interactions in a nonlocal FRDPTDMWV has been carried out. Moreover, the effect of fractional-order LSTED theory on fiber-reinforced thermoelastic diffusive half-space with double porosity has not been illuminated till now, which significantly defines the novelty of the conducted research.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 November 2022

Shishir Gupta, Rachaita Dutta and Soumik Das

This paper aims to study photothermal excitation process in an initially stressed semi-infinite double porous thermoelastic semiconductor with voids subjected to Eringen’s nonlocal

Abstract

Purpose

This paper aims to study photothermal excitation process in an initially stressed semi-infinite double porous thermoelastic semiconductor with voids subjected to Eringen’s nonlocal elasticity theory under the fractional order triple-phase-lag thermoelasticity theory. The considered substrate is governed by the mechanical and thermal loads at the free surface.

Design/methodology/approach

The normal mode technique is used to carry out the investigation of photothermal transportation. By virtue of the MATHEMATICA software, each distribution is exhibited graphically.

Findings

The expressions of the displacements, temperature, volume fractions of both kinds of voids, carrier density and stresses are determined analytically. With the help of the numerical data for silicon (Si) material, graphical implementations are presented on the basis of initial stress, fractional order, nonlocality and thermoelectric coupling parameters.

Originality/value

The present study fabricates the association of Eringen’s nonlocal theory and the stress analysis in a semiconducting double porous thermoelastic material with voids, which significantly implies the originality of the conducted work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 February 2021

Devender Sheoran, Rajesh Kumar, Seema Thakran and Kapil Kumar Kalkal

The purpose of this paper is to study two-dimensional deformations in a nonlocal, homogeneous, isotropic, rotating thermoelastic medium with temperature-dependent properties under…

Abstract

Purpose

The purpose of this paper is to study two-dimensional deformations in a nonlocal, homogeneous, isotropic, rotating thermoelastic medium with temperature-dependent properties under the purview of the Green-Naghdi model II of generalized thermoelasticity. The formulation is subjected to a mechanical load.

Design/methodology/approach

The normal mode analysis technique is adopted to procure the exact solution of the problem.

Findings

For isothermal and insulated boundaries, discussions have been made to highlight the influences of rotational speed, nonlocality, temperature-dependent properties and time on the physical quantities.

Originality/value

The exact expressions for the displacement components, stresses and temperature field are obtained in the physical domain. These are also calculated numerically for a magnesium crystal-like material and depicted through graphs to observe the variations of the considered physical quantities. The present study is useful and valuable for the analysis of problems involving mechanical shock, rotational speed, nonlocal parameter, temperature-dependent properties and elastic deformation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 March 2024

Vipin Gupta, Barak M.S. and Soumik Das

This paper addresses a significant research gap in the study of Rayleigh surface wave propagation within a piezoelectric medium characterized by piezoelectric properties, thermal…

Abstract

Purpose

This paper addresses a significant research gap in the study of Rayleigh surface wave propagation within a piezoelectric medium characterized by piezoelectric properties, thermal effects and voids. Previous research has often overlooked the crucial aspects related to voids. This study aims to provide analytical solutions for Rayleigh waves propagating through a medium consisting of a nonlocal piezo-thermo-elastic material with voids under the Moore–Gibson–Thompson thermo-elasticity theory with memory dependencies.

Design/methodology/approach

The analytical solutions are derived using a wave-mode method, and roots are computed from the characteristic equation using the Durand–Kerner method. These roots are then filtered based on the decay condition of surface waves. The analysis pertains to a medium subjected to stress-free and isothermal boundary conditions.

Findings

Computational simulations are performed to determine the attenuation coefficient and phase velocity of Rayleigh waves. This investigation goes beyond mere calculations and examines particle motion to gain deeper insights into Rayleigh wave propagation. Furthermore, this investigates how kernel function and nonlocal parameters influence these wave phenomena.

Research limitations/implications

The results of this study reveal several unique cases that significantly contribute to the understanding of Rayleigh wave propagation within this intricate material system, particularly in the presence of voids.

Practical implications

This investigation provides valuable insights into the synergistic dynamics among piezoelectric constituents, void structures and Rayleigh wave propagation, enabling advancements in sensor technology, augmented energy harvesting methodologies and pioneering seismic monitoring approaches.

Originality/value

This study formulates a novel governing equation for a nonlocal piezo-thermo-elastic medium with voids, highlighting the significance of Rayleigh waves and investigating the impact of memory.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 February 2024

Azmeera Sudheer Kumar, Subodh Kumar, Prashant Kumar Choudhary, Ankit Gupta and Ashish Narayan

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this…

52

Abstract

Purpose

The purpose is to explore the free vibration behaviour of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The goal of this study is to gain a better knowledge of the dynamic response of nanoscale structures made of functionally graded materials and porous features. The Rayleigh-Ritz approach is used in this study to generate realistic mathematical models that take elastic foundation support into account. This research can contribute to the design and optimization of advanced nanomaterials with potential applications in engineering and technology by providing insights into the influence of material composition, porosity and foundation support on the vibrational properties of nanoplates.

Design/methodology/approach

A systematic methodology is proposed to evaluate the free vibration characteristics of elastic foundation-supported porous functionally graded nanoplates using the Rayleigh-Ritz approach. The study began by developing the mathematical model, adding material properties and establishing governing equations using the Rayleigh-Ritz approach. Numerical approaches to solve the problem are used, using finite element methods. The results are compared to current solutions or experimental data to validate the process. The results are also analysed, keeping the influence of factors on vibration characteristics in mind. The findings are summarized and avenues for future research are suggested, ensuring a robust investigation within the constraints.

Findings

The Rayleigh-Ritz technique is used to investigate the free vibration properties of elastic foundation-supported porous functionally graded nanoplates. The findings show that differences in material composition, porosity and foundation support have a significant impact on the vibrational behaviour of nanoplates. The Rayleigh-Ritz approach is good at modelling and predicting these properties. Furthermore, the study emphasizes the possibility of customizing nanoplate qualities to optimize certain vibrational responses, providing useful insights for engineering applications. These findings expand understanding of dynamic behaviours in nanoscale structures, making it easier to build innovative materials with specific features for a wide range of industrial applications.

Originality/value

The novel aspect of this research is the incorporation of elastic foundation support, porous structures and functionally graded materials into the setting of nanoplate free vibrations, utilizing the Rayleigh-Ritz technique. Few research have looked into this complex combo. By tackling complicated interactions, the research pushes boundaries, providing a unique insight into the dynamic behaviour of nanoscale objects. This novel approach allows for a better understanding of the interconnected effects of material composition, porosity and foundation support on free vibrations, paving the way for the development of tailored nanomaterials with specific vibrational properties for advanced engineering and technology applications.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 18 October 2022

Vipin Gupta, Rajesh Kumar, Manjeet Kumar, Vijayata Pathania and M.S. Barak

This paper aims to study the variation of energy ratios of different reflected and transmitted waves by calculating the amplitude ratios.

Abstract

Purpose

This paper aims to study the variation of energy ratios of different reflected and transmitted waves by calculating the amplitude ratios.

Design/methodology/approach

This investigation studied the reflection and transmission of plane waves on an interface of nonlocal orthotropic piezothermoelastic space (NOPHS) and fluid half-space (FHS) in reference to dual-phase-lag theory under three different temperature models, namely, without-two-temperature, classical-two-temperature, and hyperbolic-two-temperature with memory-dependent derivatives (MDDs).

Findings

The primary (P) plane waves propagate through FHS and strike at the interface x3 = 0. The results are one wave reflected in FHS and four waves transmitted in NOPHS. It is noticed that these ratios are observed under the impact of nonlocal, dual-phase-lag (DPL), two-temperature and memory-dependent parameters and are displayed graphically. Some particular cases are also deduced, and the law of conservation of energy across the interface is justified.

Research limitations/implications

According to the available literature, there is no substantial research on the considered model incorporating NOPHS and FHS with hyperbolic two-temperature, DPL and memory.

Practical implications

The current model may be used in various fields, including earthquake engineering, nuclear reactors, high particle accelerators, aeronautics, soil dynamics and so on, where MDDs and conductive temperature play a significant role. Wave propagation in a fluid-piezothermoelastic media with different characteristics such as initial stress, magnetic field, porosity, temperature, etc., provides crucial information about the presence of new and modified waves, which is helpful in a variety of technical and geophysical situations. Experimental seismologists, new material designers and researchers may find this model valuable in revising earthquake estimates.

Social implications

The researchers may classify the material using the two-temperature parameter and the time-delay operator, where the parameter is a new indication of its capacity to transmit heat in interaction with various materials.

Originality/value

The submitted manuscript is original work done by the team of said authors and each author contributed equally to preparing this manuscript.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 15