Search results

1 – 10 of 51
Article
Publication date: 1 October 2018

Mohammad Malikan and Van Bac Nguyen

This paper aims to present a new one-variable first-order shear deformation theory (OVFSDT) using nonlocal elasticity concepts for buckling of graphene sheets.

Abstract

Purpose

This paper aims to present a new one-variable first-order shear deformation theory (OVFSDT) using nonlocal elasticity concepts for buckling of graphene sheets.

Design/methodology/approach

The FSDT had errors in its assumptions owing to the assumption of constant shear stress distribution along the thickness of the plate, even though by using the shear correction factor (SCF), it has been slightly corrected, the errors have been remained owing to the fact that the exact value of SCF has not already been accurately identified. By using two-variable first-order shear deformation theories, these errors decreased further by removing the SCF. To consider nanoscale effects on the plate, Eringen’s nonlocal elasticity theory was adopted. The critical buckling loads were computed by Navier’s approach. The obtained numerical results were then compared with previous studies’ results using molecular dynamics simulations and other plate theories for validation which also showed the accuracy and simplicity of the proposed theory.

Findings

In comparing the biaxial buckling results of the proposed theory with the two-variable shear deformation theories and exact results, it revealed that the two-variable plate theories were not appropriate for the investigation of asymmetrical analyses.

Originality/value

A formulation for FSDT was innovated by reconsidering its errors to improve the FSDT for investigation of mechanical behavior of nanoplates.

Details

World Journal of Engineering, vol. 15 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 June 2012

Salvatore Brischetto and Erasmo Carrera

The purpose of this paper is to consider the static analysis of nanocomposite plates. Nanocomposites consist of a small amount of nanoscale reinforcements which can have an…

Abstract

Purpose

The purpose of this paper is to consider the static analysis of nanocomposite plates. Nanocomposites consist of a small amount of nanoscale reinforcements which can have an observable effect on the macroscale properties of the composites.

Design/methodology/approach

In the present study the reinforcements considered are non‐spherical, high aspect ratio fillers, in particular nanometer‐thin platelets (clays) and nanometer‐diameter cylinders (carbon nanotubes, CNTs). These plates are considered simply supported with a bi‐sinusoidal pressure applied at the top. These conditions allow the solving of the governing equations in a closed form. Four cases are investigated: a single layered plate with CNT reinforcements in elastomeric or thermoplastic polymers, a single layered plate with CNT reinforcements in a polymeric matrix embedding carbon fibers, a sandwich plate with external skins in aluminium alloy and an internal core in silicon foam filled with CNTs and a single layered plate with clay reinforcements in a polymeric matrix. A short review of the most important results in the literature is given to determine the elastic properties of the suggested nanocomposites which will be used in the proposed static analysis. The static response of the plates is obtained by using classical two‐dimensional models such as classical lamination theory (CLT) and first order shear deformation theory (FSDT), and an advanced mixed model based on the Carrera Unified Formulation (CUF) which makes use of a layer‐wise description for both displacement and transverse stress components.

Findings

The paper has two aims: to demonstrate that the use of classical theories, originally developed for traditional plates, is inappropriate to investigate the static response of nanocomposite plates and to quantify the beneficial effect of the nanoreinforcements in terms of static response (displacements and stresses).

Originality/value

In the literature these effects are usually given only in terms of elastic properties such as Young moduli, shear moduli and Poisson ratios, and not in terms of displacements and stresses.

Details

Multidiscipline Modeling in Materials and Structures, vol. 8 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 October 2019

Ayush Varshney, Arshad H. Khan, M. Yaqoob Yasin, Zahid A. Khan and Mohammad Asjad

The purpose of this paper is to present the multi-objective optimization of the dynamic response of isotropic and laminated composite folded plates. The dynamic analysis has been…

Abstract

Purpose

The purpose of this paper is to present the multi-objective optimization of the dynamic response of isotropic and laminated composite folded plates. The dynamic analysis has been carried out using the finite element method based on the first-order shear deformation theory.

Design/methodology/approach

Hamilton’s principle has been employed for the derivation of the governing equations. Natural frequencies are obtained using the eigenvalue extraction method. The optimal combination of the crank angle, lamination scheme and boundary conditions on the natural frequencies of folded plates for their safe and optimal dynamic design has been obtained. The analysis has been carried out using finite element approach based on FSDT to obtain the dynamic equation of single- and double-fold laminated plates. In total, 15 experiments as per Taguchi’s standard L15 orthogonal array have been performed. Further, standard deviation (SD) based TOPSIS method is used to perform multi-response optimization of folded plates in order to rank the combination of the input parameters.

Findings

SD integrated with TOPSIS reveals that Experiment No. 8 (crank angle=90° and anti-symmetric lamination scheme=0°/90°/0°/90°), Experiment No. 14 (crank angle=150° and anti-symmetric lamination scheme=0o/90o/0o/90o), Experiment No. 2 (crank angle=30° and anti-symmetric lamination scheme=0°/90°/0°/90°) and Experiment No. 3 (crank angle=30° and symmetric lamination scheme=0°/90°/0°/90°) occupy rank 1 for one fold, one end clamped, one fold, two ends clamped, two folds, one end clamped and two folds, two ends clamped conditions, respectively, in order to maximize the modal response corresponding to the fundamental mode.

Originality/value

SD-based technique for order of preference by similarity to ideal solution (TOPSIS) method is used to rank the process parameters. The optimum combination of the input parameters on the multi-response optimization of dynamics of the folded plates has also been evaluated using the analysis of mean (ANOM).

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 19 December 2017

Mohammad Malikan

The purpose of this paper is to predict the mechanical behavior of a piezoelectric nanoplate under shear stability by taking electric voltage into account in thermal environment.

Abstract

Purpose

The purpose of this paper is to predict the mechanical behavior of a piezoelectric nanoplate under shear stability by taking electric voltage into account in thermal environment.

Design/methodology/approach

Simplified first-order shear deformation theory has been used as a displacement field. Modified couple stress theory has been applied for considering small-size effects. An analytical solution has been taken into account for various boundary conditions.

Findings

The length scale impact on the results of any boundary conditions increases with an increase in l parameter. The effect of external electric voltage on the critical shear load is more than room temperature effects. With increasing aspect ratio the critical shear load decreases and external electric voltage becomes more impressive. By considering piezoelectric nanoplates, it is proved that the temperature rise cannot become a sensitive factor on the buckling behavior. The length scale parameter has more effect for more flexible boundary conditions than others. By considering nanosize, the consideration has led to much bigger critical load vs macro plate.

Originality/value

In the current paper for the first time the simplified first-order shear deformation theory is used for obtaining governing equations by using nonlinear strains for shear buckling of a piezoelectric nanoplate. The couple stress theory for the first time is applied on the nonlinear first-order shear deformation theory. For the first time, the thermal environment effects are considered on shear stability of a piezoelectric nanoplate.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 4 September 2017

Goodluck Charles and Neema Mori

The purpose of this article is to examine the effects that dynamic incentives and the borrowing histories of clients of informal lending institutions have on loan repayment…

Abstract

Purpose

The purpose of this article is to examine the effects that dynamic incentives and the borrowing histories of clients of informal lending institutions have on loan repayment performance, in particular, the extent to which multiple borrowing and progressive lending affect the repayment of loans.

Design/methodology/approach

The paper uses a data set of 835 borrowers drawn from an informal lending institution in Tanzania. Descriptive analysis and econometric models are used to test the developed hypotheses.

Findings

Whereas clients with multiple loans are associated with poor loan repayment, progressive lending contributes to positive repayment outcomes. Multiple borrowers face increased debt levels and thereby an increased inability to meet their repayment obligations; in contrast, progressive lending by building up a lender–client relationship helps clients to obtain higher loans with a minimum amount of screening.

Research limitations/implications

This was a cross-sectional study based on a sample of individual clients drawn from a single institution. However, since the majority of clients had also taken out loans with other financial institutions, the sample is considered to be representative.

Practical implications

A client’s past repayment performance and multiple loan history must be assessed so that multiple borrowing can be prevented and credit absorption capacity can be gauged more accurately. The repeated nature of the interactions and the threat to cut off any future lending (if loans are not repaid) can be exploited to overcome any information deficit.

Originality/value

This study was conducted in a context in which the degree of information sharing was low and institutional access to clients’ credit histories was limited. It contributes knowledge on how lenders minimise the risk flowing from the ex ante information gap and moral hazards arising from the ex post information gap.

Details

International Journal of Development Issues, vol. 16 no. 3
Type: Research Article
ISSN: 1446-8956

Keywords

Article
Publication date: 15 July 2019

Neema Mori

Savings help to provide for future personal and households needs. The purpose of this paper examined Tanzanians’ determinants of saving. It studied the relationship between…

1026

Abstract

Purpose

Savings help to provide for future personal and households needs. The purpose of this paper examined Tanzanians’ determinants of saving. It studied the relationship between individual characteristics (gender, marital status, age, education level and financial education) and saving behaviour.

Design/methodology/approach

The paper used 2017 national baseline survey data with 8,959 observations from all over Tanzania. Descriptive analysis and econometric models were used to test the developed hypotheses.

Findings

Descriptive results show that Tanzanians mainly associate saving with setting money aside to keep it safe for future use. The results also show that most Tanzanians keep their money at home – a very informal way of saving. The results indicate that age and education level are key characteristics that determine positive saving by Tanzanians.

Research limitations/implications

This study used FinScope survey data which was limited to Tanzania. Since FinScope surveys are done in other African countries, using similar methodologies, it would be interesting to investigate similar trends in other contexts.

Practical implications

The study recommends promoting awareness of saving in formal institutions. This will benefit not only customers but the financial institutions and mobile telecom companies themselves.

Originality/value

This study contributes to the life-cycle theory by showing how families, societies and exposures influence individuals to save. Gender and marital status seem to play a lesser role than social- and exposure-related aspects of age and education. Exposure and social interactions are key determinants in the attitude to saving.

Details

Review of Behavioral Finance, vol. 11 no. 3
Type: Research Article
ISSN: 1940-5979

Keywords

Article
Publication date: 2 August 2018

Mohammad Malikan

Thermal buckling of double-layered piezoelectric nanoplates has been analyzed by applying an external electric voltage on the nanoplates. The paper aims to discuss this issue.

94

Abstract

Purpose

Thermal buckling of double-layered piezoelectric nanoplates has been analyzed by applying an external electric voltage on the nanoplates. The paper aims to discuss this issue.

Design/methodology/approach

Double-layered nanoplates are connected to each other by considering linear van der Waals forces. Nanoplates are placed on a polymer matrix. A comprehensive thermal stress function is used for investigating thermal buckling. A linear electric function is used for taking external electric voltages into account. For considering the small-scale effect, the modified couple stress theory has been applied. An analytical solution has been used by taking various boundary conditions.

Findings

EEV has a considerable impacted on the results of various half-waves in all boundary conditions. By increasing EEV, the reduction of critical buckling temperature in higher half-waves is remarkably slower than lower half-waves. By considering long lengths, the effect of EEV on the critical temperature will be markedly decreased.

Originality/value

This paper uses electro-thermal stability analysis. Double-layered piezoelectric nanoplates are analyzed. A comprehensive thermal stress function is applied for taking into account critical temperature.

Article
Publication date: 24 August 2010

Izzet U. Cagdas

Purpose — The purpose of this paper is to assess the accuracy of homogenization or the smeared stiffness approach in analyzing quadrigrid plates under transverse loads is assessed…

Abstract

Purpose — The purpose of this paper is to assess the accuracy of homogenization or the smeared stiffness approach in analyzing quadrigrid plates under transverse loads is assessed by comparing two distinct finite element solutions. The grid is assumed to be made of homogeneous isotropic material. However, the numerical solution procedure adopted here is applicable to grids made of unidirectional composite ribs. Design/methodology/approach — The finite element structural analysis is conducted by using plate elements based on the first‐order shear deformable theory (FSDT) and grillage analysis using first‐order shear deformable beam elements. The grillage analysis results, which are taken as the exact results, are compared with the approximate results obtained using FSDT plate elements, where the stiffness matrices obtained by the smeared stiffness approach are incorporated in the plate finite element formulation. Several sample problems are solved and the influences of rib spacing, rib thickness‐to‐width ratio, plate dimensions, and loading are examined. Findings — The results presented here show that homogenization yields reliable results when certain conditions are satisfied. Originality/value — The paper demonstrates that it is necessity to conduct thorough and systematic research studies revealing the accuracy of these models, as the applicability limits of homogenization are not clearly known.

Details

Engineering Computations, vol. 27 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 August 2018

Smita Parida and Sukesh Chandra Mohanty

The purpose of this paper is to investigate the linear and non-linear free vibration of a functionally graded material (FGM) rotating cantilever plate in the thermal environment…

Abstract

Purpose

The purpose of this paper is to investigate the linear and non-linear free vibration of a functionally graded material (FGM) rotating cantilever plate in the thermal environment. The study employs the development of a non-linear mathematical model using the higher order shear deformation theory in which the traction free condition is applied to derive the simplified displacement model with seven field variables instead of nine.

Design/methodology/approach

A mathematical model is developed based on the higher order shear deformation theory using von-Karman type non-linearity. The rotating plate domain has been discretized into C0 eight-noded quadratic serendipity elements with node wise 7 degrees of freedom. The material properties are considered temperature dependent and graded along the thickness direction obeying a simple power law distribution in terms of the volume fraction of constituents, based on Voigt’s micromechanical method. The governing equations are derived using Hamilton’s principle and are solved using the direct iterative method.

Findings

The importance of the present mathematical model developed for numerical analysis has been stated through the comparison studies. The results provide an insight into the vibration response of FGM rotating plate under thermal environment. The influence of various parameters like setting angle, volume fraction index, hub radius, rotation speed parameter, aspect ratio, side-thickness ratio and temperature gradient on linear and non-linear frequency parameters is discussed in detail.

Originality/value

A non-linear mathematical model is newly developed based on C0 continuity for the functionally graded rotating plate considering the 1D Fourier equation of heat conduction. The present findings can be utilized for the design of rotating plates made up of a FGM in the thermal environment under real-life situations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 7 March 2016

Trupti Ranjan Mahapatra, Vishesh Ranjan Kar and Subrata Kumar Panda

The purpose of this paper is to analyse the nonlinear flexural behaviour of laminated curved panel under uniformly distributed load. The study has been extended to analyse…

Abstract

Purpose

The purpose of this paper is to analyse the nonlinear flexural behaviour of laminated curved panel under uniformly distributed load. The study has been extended to analyse different types of shell panels by employing the newly developed nonlinear mathematical model.

Design/methodology/approach

The authors have developed a novel nonlinear mathematical model based on the higher order shear deformation theory for laminated curved panel by taking the geometric nonlinearity in Green-Lagrange sense. In addition to that all the nonlinear higher order terms are considered in the present formulation for more accurate prediction of the flexural behaviour of laminated panels. The sets of nonlinear governing equations are obtained using variational principle and discretised using nonlinear finite element steps. Finally, the nonlinear responses are computed through the direct iterative method for shell panels of various geometries (spherical/cylindrical/hyperboloid/elliptical).

Findings

The importance of the present numerical model for small strain large deformation problems has been demonstrated through the convergence and the comparison studies. The results give insight into the laminated composite panel behaviour under mechanical loading and their deformation behaviour. The effects of different design parameters and the shell geometries on the flexural responses of the laminated curved structures are analysed in detailed. It is also observed that the present numerical model are realistic in nature as compared to other available mathematical model for the nonlinear analysis of the laminated structure.

Originality/value

A novel nonlinear mathematical model is developed first time to address the severe geometrical nonlinearity for curved laminated structures. The outcome from this paper can be utilized for the design of the laminated structures under real life circumstances.

Details

Engineering Computations, vol. 33 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 51