Search results

1 – 10 of over 1000
Article
Publication date: 2 May 2024

Gerasimos G. Rigatos

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1…

Abstract

Purpose

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1 are often used in the joints of a robotic manipulator. This results into an actuator with large mechanical impedance (also known as nonback-drivable actuator). This in turn generates high contact forces when collision of the robotic mechanism occur and can cause humans’ injury. Another disadvantage of electric actuators is that they can exhibit overheating when constant torques have to be provided. Comparing to electric actuators, pneumatic actuators have promising properties for robotic applications, due to their low weight, simple mechanical design, low cost and good power-to-weight ratio. Electropneumatically actuated robots usually have better friction properties. Moreover, because of low mechanical impedance, pneumatic robots can provide moderate interaction forces which is important for robotic surgery and rehabilitation tasks. Pneumatic actuators are also well suited for exoskeleton robots. Actuation in exoskeletons should have a fast and accurate response. While electric motors come against high mechanical impedance and the risk of causing injuries, pneumatic actuators exhibit forces and torques which stay within moderate variation ranges. Besides, unlike direct current electric motors, pneumatic actuators have an improved weight-to-power ratio and avoid overheating problems.

Design/methodology/approach

The aim of this paper is to analyze a nonlinear optimal control method for electropneumatically actuated robots. A two-link robotic exoskeleton with electropneumatic actuators is considered as a case study. The associated nonlinear and multivariable state-space model is formulated and its differential flatness properties are proven. The dynamic model of the electropneumatic robot is linearized at each sampling instance with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices. Within each sampling period, the time-varying linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. An H-infinity controller is designed for the linearized model of the robot aiming at solving the related optimal control problem under model uncertainties and external perturbations. An algebraic Riccati equation is solved at each time-step of the control method to obtain the stabilizing feedback gains of the H-infinity controller. Through Lyapunov stability analysis, it is proven that the robot’s control scheme satisfies the H-infinity tracking performance conditions which indicate the robustness properties of the control method. Moreover, global asymptotic stability is proven for the control loop. The method achieves fast convergence of the robot’s state variables to the associated reference trajectories, and despite strong nonlinearities in the robot’s dynamics, it keeps moderate the variations of the control inputs.

Findings

In this paper, a novel solution has been proposed for the nonlinear optimal control problem of robotic exoskeletons with electropneumatic actuators. As a case study, the dynamic model of a two-link lower-limb robotic exoskeleton with electropneumatic actuators has been considered. The dynamic model of this robotic system undergoes first approximate linearization at each iteration of the control algorithm around a temporary operating point. Within each sampling period, this linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. The linearization process relies on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modeling error which is due to the truncation of higher-order terms from the Taylor series is considered to be a perturbation which is asymptotically compensated by the robustness of the control algorithm. To stabilize the dynamics of the electropneumatically actuated robot and to achieve precise tracking of reference setpoints, an H-infinity (optimal) feedback controller is designed. Actually, the proposed H-infinity controller for the model of the two-link electropneumatically actuated exoskeleton achieves the solution of the associated optimal control problem under model uncertainty and external disturbances. This controller implements a min-max differential game taking place between: (i) the control inputs which try to minimize a cost function which comprises a quadratic term of the state vector’s tracking error and (ii) the model uncertainty and perturbation inputs which try to maximize this cost function. To select the stabilizing feedback gains of this H-infinity controller, an algebraic Riccati equation is being repetitively solved at each time-step of the control method. The global stability properties of the H-infinity control scheme are proven through Lyapunov analysis.

Research limitations/implications

Pneumatic actuators are characterized by high nonlinearities which are due to air compressibility, thermodynamics and valves behavior and thus pneumatic robots require elaborated nonlinear control schemes to ensure their fast and precise positioning. Among the control methods which have been applied to pneumatic robots, one can distinguish differential geometric approaches (Lie algebra-based control, differential flatness theory-based control, nonlinear model predictive control [NMPC], sliding-mode control, backstepping control and multiple models-based fuzzy control). Treating nonlinearities and fault tolerance issues in the control problem of robotic manipulators with electropneumatic actuators has been a nontrivial task.

Practical implications

The novelty of the proposed control method is outlined as follows: preceding results on the use of H-infinity control to nonlinear dynamical systems were limited to the case of affine-in-the-input systems with drift-only dynamics. These results considered that the control inputs gain matrix is not dependent on the values of the system’s state vector. Moreover, in these approaches the linearization was performed around points of the desirable trajectory, whereas in the present paper’s control method the linearization points are related with the value of the state vector at each sampling instance as well as with the last sampled value of the control inputs vector. The Riccati equation which has been proposed for computing the feedback gains of the controller is novel, so is the presented global stability proof through Lyapunov analysis. This paper’s scientific contribution is summarized as follows: (i) the presented nonlinear optimal control method has improved or equally satisfactory performance when compared against other nonlinear control schemes that one can consider for the dynamic model of robots with electropneumatic actuators (such as Lie algebra-based control, differential flatness theory-based control, nonlinear model-based predictive control, sliding-mode control and backstepping control), (ii) it achieves fast and accurate tracking of all reference setpoints, (iii) despite strong nonlinearities in the dynamic model of the robot, it keeps moderate the variations of the control inputs and (iv) unlike the aforementioned alternative control approaches, this paper’s method is the only one that achieves solution of the optimal control problem for electropneumatic robots.

Social implications

The use of electropneumatic actuation in robots exhibits certain advantages. These can be the improved weight-to-power ratio, the lower mechanical impedance and the avoidance of overheating. At the same time, precise positioning and accurate execution of tasks by electropneumatic robots requires the application of elaborated nonlinear control methods. In this paper, a new nonlinear optimal control method has been developed for electropneumatically actuated robots and has been specifically applied to the dynamic model of a two-link robotic exoskeleton. The benefit from using this paper’s results in industrial and biomedical applications is apparent.

Originality/value

A comparison of the proposed nonlinear optimal (H-infinity) control method against other linear and nonlinear control schemes for electropneumatically actuated robots shows the following: (1) Unlike global linearization-based control approaches, such as Lie algebra-based control and differential flatness theory-based control, the optimal control approach does not rely on complicated transformations (diffeomorphisms) of the system’s state variables. Besides, the computed control inputs are applied directly on the initial nonlinear model of the electropneumatic robot and not on its linearized equivalent. The inverse transformations which are met in global linearization-based control are avoided and consequently one does not come against the related singularity problems. (2) Unlike model predictive control (MPC) and NMPC, the proposed control method is of proven global stability. It is known that MPC is a linear control approach that if applied to the nonlinear dynamics of the electropneumatic robot, the stability of the control loop will be lost. Besides, in NMPC the convergence of its iterative search for an optimum depends on initialization and parameter values selection and consequently the global stability of this control method cannot be always assured. (3) Unlike sliding-mode control and backstepping control, the proposed optimal control method does not require the state-space description of the system to be found in a specific form. About sliding-mode control, it is known that when the controlled system is not found in the input-output linearized form the definition of the sliding surface can be an intuitive procedure. About backstepping control, it is known that it cannot be directly applied to a dynamical system if the related state-space model is not found in the triangular (backstepping integral) form. (4) Unlike PID control, the proposed nonlinear optimal control method is of proven global stability, the selection of the controller’s parameters does not rely on a heuristic tuning procedure, and the stability of the control loop is assured in the case of changes of operating points. (5) Unlike multiple local models-based control, the nonlinear optimal control method uses only one linearization point and needs the solution of only one Riccati equation so as to compute the stabilizing feedback gains of the controller. Consequently, in terms of computation load the proposed control method for the electropneumatic actuator’s dynamics is much more efficient.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 19 April 2024

Oguzhan Ozcelebi, Jose Perez-Montiel and Carles Manera

Might the impact of the financial stress on exchange markets be asymmetric and exposed to regime changes? Departing from the existing literature, highlighting that the domestic…

15

Abstract

Purpose

Might the impact of the financial stress on exchange markets be asymmetric and exposed to regime changes? Departing from the existing literature, highlighting that the domestic and foreign financial stress in terms of money market have substantial effects on exchange market, this paper aims to investigate the impacts of the bond yield spreads of three emerging countries (Mexico, Russia, and South Korea) on their exchange market pressure indices using monthly observations for the period 2010:01–2019:12. Additionally, the paper analyses the impact of bond yield spread of the US on the exchange market pressure indices of the three mentioned emerging countries. The authors hypothesized whether the negative and positive changes in the bond yield spreads have varying effects on exchange market pressure indices.

Design/methodology/approach

To address the research question, we measure the bond yield spread of the selected countries by using the interest rate spread between 10-year and 3-month treasury bills. At the same time, the exchange market pressure index is proxied by the index introduced by Desai et al. (2017). We base the empirical analysis on nonlinear vector autoregression (VAR) models and an asymmetric quantile-based approach.

Findings

The results of the impulse response functions indicate that increases/decreases in the bond yield spreads of Mexico, Russia and South Korea raise/lower their exchange market pressure, and the effects of shocks in the bond yield spreads of the US also lead to depreciation/appreciation pressures in the local currencies of the emerging countries. The quantile connectedness analysis, which allows for the role of regimes, reveals that the weights of the domestic and foreign bond yield spread in explaining variations of exchange market pressure indices are higher when exchange market pressure indices are not in a normal regime, indicating the role of extreme development conditions in the exchange market. The quantile regression model underlines that an increase in the domestic bond yield spread leads to a rise in its exchange market pressure index during all exchange market pressure periods in Mexico, and the relevant effects are valid during periods of high exchange market pressure in Russia. Our results also show that Russia differs from Mexico and South Korea in terms of the factors influencing the demand for domestic currency, and we have demonstrated the role of domestic macroeconomic and financial conditions in surpassing the effects of US financial stress. More specifically, the impacts of the domestic and foreign financial stress vary across regimes and are asymmetric.

Originality/value

This study enriches the literature on factors affecting the exchange market pressure of emerging countries. The results have significant economic implications for policymakers, indicating that the exchange market pressure index may trigger a financial crisis and economic recession.

Details

International Journal of Emerging Markets, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 12 March 2024

Aimin Wang, Sadam Hussain and Jiying Yan

The purpose of this study is to conduct a thorough empirical investigation of the intricate relationship between urban housing sales prices and land supply prices in China, with…

Abstract

Purpose

The purpose of this study is to conduct a thorough empirical investigation of the intricate relationship between urban housing sales prices and land supply prices in China, with the aim of elucidating the underlying economic principles governing this dynamic interplay.

Design/methodology/approach

Using monthly data of China, the authors use the asymmetry nonlinear autoregressive distributed lag (NARDL) model to test for nonlinearity in the relationship between land supply price and urban housing prices.

Findings

The empirical results confirm the existence of an asymmetric relationship between land supply price and urban housing prices. The authors find that land supply price has a positive and statistically significant impact on urban housing prices when land supply is increasing. Policymakers should strive to strike a balance between safeguarding residents’ housing rights and maintaining market stability.

Research limitations/implications

Although the asymmetric effect of land supply price has been identified as a significant contributor in this study, it is important to note that the research primarily relies on time series data and focuses on analysis at the national level. Although time series data offer a macroscopic perspective of overall trends within a country, they fail to adequately showcase the structural variations among different cities.

Practical implications

To ensure a stable housing market and meet residents’ housing needs, policymakers must reexamine current land policies. Solely relying on restricting land supply to control housing prices may yield counterproductive results. Instead, increasing land supply could be a more viable option. By rationally adjusting land supply prices, the government can not only mitigate excessive growth in housing prices but also foster the healthy development of the housing market.

Originality/value

First, the authors have comprehensively evaluated the impact of land supply prices in China on urban housing sales prices, examining whether they play a facilitating or mitigating role in the fluctuation of these prices. Second, departing from traditional linear analytical frameworks, the authors have explored the possibility of a nonlinear relationship existing between land supply prices and urban housing sales prices in China. Finally, using an advanced NARDL model, the authors have delved deeper into the asymmetric effects of land supply prices on urban housing sales prices in China.

Details

International Journal of Housing Markets and Analysis, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1753-8270

Keywords

Article
Publication date: 4 April 2024

Tassadit Hermime, Abdelghani Seghir and Smail Gabi

The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several…

Abstract

Purpose

The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several accelerograms.

Design/methodology/approach

Finite element analysis is conducted using the Plaxis 2D software to generate the numerical model of quay wall. The extension of berth 25 at the port of Bejaia, located in northeastern Algeria, represents a case study. Incremental dynamic analyses are carried out to examine variation of the main response parameters under seismic excitations with increasing Peak ground acceleration (PGA) levels. Two global damage indices based on the safety factor and bending moment are introduced to assess the relationship between PGA and the damage levels.

Findings

The results obtained indicate that the sheet pile quay wall can safely withstand seismic loads up to PGAs of 0.35 g and that above 0.45 g, care should be taken with the risk of reaching the ultimate moment capacity of the steel sheet pile. However, for PGAs greater than 0.5 g, it was clearly demonstrated that the excessive deformations with material are likely to occur in the soil layers and in the structural elements.

Originality/value

The main contribution of the present work is a new double seismic damage index for a steel sheet pile supported quay wharf. The numerical modeling is first validated in the static case. Then, the results obtained by performing several incremental dynamic analyses are exploited to evaluate the degradation of the soil safety factor and the seismic capacity of the pile sheet wall. Computed values of the proposed damage indices of the considered quay wharf are a practical helping tool for decision-making regarding the seismic safety of the structure.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 9 May 2024

Mohammad A. Gharaibeh and Jürgen Wilde

In power electronics, there are various metallic material systems used as die attachments. The complete understanding of the thermomechanical behavior of such interconnections is…

Abstract

Purpose

In power electronics, there are various metallic material systems used as die attachments. The complete understanding of the thermomechanical behavior of such interconnections is very important. Therefore, this paper aims to examine the thermomechanical response of four famous die attach materials, including sintered silver, sintered nano-copper particles, gold-tin solders and silver-tin transient liquid phase (TLP) bonds, using nonlinear finite element analysis.

Design/methodology/approach

During the study, the mechanical properties of all die attach systems, including elastic and viscoplasticity parameters, are obtained from literature studies and hence incorporated into the numerical analysis. Subsequently, the bond stress–strain relationships, stored inelastic strain energies and equivalent plastic strains are thoroughly examined.

Findings

The results showed that the silver-tin TLP bonds are more likely to develop higher inelastic strain energy densities, while the sintered silver and copper interconnects would possess higher plastic strains and deformations. Suggesting higher damage to such metallic die attachments. The expensive gold-based solders have developed least inelastic strain energy densities and least plastic strains as well. Thus, they are expected to have improved fatigue performance compared to other bonding configurations.

Originality/value

This paper extensively investigates and compares the mechanical and thermal response of various metallic die attachments. In fact, there are no available research studies that discuss the behavior of such important die attachments of power electronics when exposed to mechanical and thermomechanical loads.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 19 April 2024

Carmelita Wenceslao Amistad and Daryl Ace Cornell

This study aims to determine the effects of lodging infrastructure development (LID) on Cordillera Administrative Region’s (CAR) environmental quality and natural resource…

Abstract

Purpose

This study aims to determine the effects of lodging infrastructure development (LID) on Cordillera Administrative Region’s (CAR) environmental quality and natural resource management and its implication to globally responsible leadership. Specifically, this study sought to determine the contribution of LID to environmental deterioration and natural resource degradation in the CAR. As a result, a mathematical model is developed, which supports sustainability practices to maintain the environmental quality and natural resource management in CAR, Philippines.

Design/methodology/approach

This study used a descriptive research design using a mixed-methods approach. Self-structured interview and survey were used to gather the data. The population of this study involved three groups. There were 6.28% (34) experts in the field for the qualitative data, 70.24% (380) respondents for the quantitative data and 23.47% (127) from the lodging establishments. 120 respondents from the Department of Tourism – CAR (DOT-CAR) accredited hotels. Nonparametric and nonlinear regression analysis was used to process the data.

Findings

The effects of LID on the environmental quality and natural resource management in CAR as measured through carbon emission from liquefied petroleum gas (LPG), electricity and water consumption in the occupied guest rooms revealed a direct correlation between the LID. Findings conclude that the increase in tourist arrival is a trigger factor in the increase in LID in the CAR. The increase in LID implies a rise in carbon emission in the lodging infrastructure. Any increase in tourist arrivals increases lodging room occupancy; the increased lodging room occupancy contributes to carbon emissions. Thus, tourism trends contribute to the deterioration of the environmental quality and degradation of the natural resources in the CAR. A log-log model shows the percentage change in the average growth of tourist arrival and the percentage increase in carbon emissions. Establishments should observe standard room capacity to maintain the carbon emission of occupied lodging rooms at a minimum. Responsible leadership is a factor in the implementation of policy on standard room capacity.

Practical implications

The result of the study has some implications for the lodging businesses, the local government unit (LGU), the Department of Tourism (DOT) and the Department of Environment and Natural Resources (DENR) in the CAR. The study highlights the contribution of the lodging establishments to CO2 emission, which can degrade the quality of the environment, and the implication of responsible leadership in managing natural resources in the CAR. The direct inverse relationship between energy use and CO2 emission in hotels indicates that increased energy consumption leads to environmental degradation (Ahmad et al., 2018). Therefore, responsible leadership among policymakers in the lodging and government sectors – LGU, DOT and DENR – should abound in the CAR. Benchmarking on the model embarked from this study can help in designing and/or enhancing the policy on room capacity standardization, considering the total area with its maximum capacity to keep the carbon emission at a lower rate. Furthermore, as a responsible leader in the community, one should create programs that regulate the number of tourists visiting the place to decrease the number of overnight stays. Besides, having the political will to implement reduced room occupancy throughout the lodging establishments in CAR can help reduce the carbon emissions from the lodging businesses. After all, one of the aims of the International Environment Protection Organization is to reduce CO2 emissions in the tourism industry. Hence, responsible leadership in environmental quality preservation and sustainable natural resource management must help prevent and avoid greenhouse gas (GHG) emissions.

Originality/value

Most studies about carbon emission in the environment tackle about carbon dioxide emitted by transportation and factories. This study adds to the insights on the existing information about the carbon emission in the environment from the lodging establishments through the use of LPG, electricity and water consumption in the occupied guest rooms. The findings of the study open an avenue for globally responsible leadership in sustaining environmental quality and preservation of natural resources by revisiting and amending the policies on the number of room occupancy, guidelines and standardization, considering the total lodging area with its maximum capacity to keep the carbon emission at a minimum, thus contributing to the lowering of GHG emissions from the lodging industry.

Details

Journal of Global Responsibility, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2041-2568

Keywords

Article
Publication date: 15 May 2023

Luiz Eduardo Gaio and Daniel Henrique Dario Capitani

This study investigates the impacts of the Russia–Ukraine conflict on the cross-correlation between agricultural commodity prices and crude oil prices.

153

Abstract

Purpose

This study investigates the impacts of the Russia–Ukraine conflict on the cross-correlation between agricultural commodity prices and crude oil prices.

Design/methodology/approach

The authors used MultiFractal Detrended Fluctuation Cross-Correlation Analysis (MF-X-DFA) to explore the correlation behavior before and during conflict. The authors analyzed the price connections between future prices for crude oil and agricultural commodities. Data consists of daily futures price returns for agricultural commodities (Corn, Soybean and Wheat) and Crude Oil (Brent) traded on the Chicago Mercantile Exchange from Aug 3, 2020, to July 29, 2022.

Findings

The results suggest that cross-correlation behavior changed after the conflict. The multifractal behavior was observed in the cross correlations. The Russia–Ukraine conflict caused an increase in the series' fractal strength. The study findings showed that the correlations involving the wheat market were higher and anti-persistent behavior was observed.

Research limitations/implications

The study was limited by the number of observations after the Russia–Ukraine conflict.

Originality/value

This study contributes to the literature that investigates the impact of the Russia–Ukraine conflict on the financial market. As this is a recent event, as far as we know, we did not find another study that investigated cross-correlation in agricultural commodities using multifractal analysis.

Details

Journal of Agribusiness in Developing and Emerging Economies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-0839

Keywords

Article
Publication date: 28 February 2024

Dat Tien Doan, Tuyet Phuoc Anh Mai, Ali GhaffarianHoseini, Amirhosein Ghaffarianhoseini and Nicola Naismith

This study aims to identify the primary research areas of modern methods of construction (MMC) along with its current trends and developments.

Abstract

Purpose

This study aims to identify the primary research areas of modern methods of construction (MMC) along with its current trends and developments.

Design/methodology/approach

A combination of bibliometric and qualitative analysis is adopted to examine 1,957 MMC articles in the Scopus database. With the support of CiteSpace 6.1.R6, the clusters, leading authors, journals, institutions and countries in the field of MMC are examined.

Findings

Offsite construction, inter-modular connections, augmenting output, prefabricated concrete beams and earthquake-resilient prefabricated beam–column steel joints are the top five research areas in MMC. Among them, offsite construction and inter-modular connections are significantly focused, with many research articles. The potential for collaboration, among prominent authors such as Wang, J., Liu, Y. and Wang, Y., explains the recent rapid growth of the MMC field of research. With a total of 225 articles, Engineering Structures is the journal that has published the most articles on MMC. China is the leading country in this field, and the Ministry of Education China is the top institution in MMC.

Originality/value

The findings of this study bear significant implications for stakeholders in academia and industry alike. In academia, these insights allow researchers to identify research gaps and foster collaboration, steering efforts toward innovative and impactful outcomes. For industries using MMC practices, the clarity provided on MMC techniques facilitates the efficient adoption of best practices, thereby promoting collaboration, innovation and global problem-solving within the construction field.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 2 January 2024

Sunil Tyagi

With the aid of bibliometric analysis, this study aims to show the state-of-the-art of research on the digital divide and identifies new areas for further investigation.

Abstract

Purpose

With the aid of bibliometric analysis, this study aims to show the state-of-the-art of research on the digital divide and identifies new areas for further investigation.

Design/methodology/approach

Performance analysis and science mapping were used in the study to analyse a sample of 3,571 studies that were published between 2018 and 2022. The “Title-Keyword-Abstract” search option was used to collect the anticipated publications data from the Scopus database. The gathered data were analysed using the common bibliometric indices to evaluate the research landscape. The science mapping tactics made use of the VOSviewer and Biblioshiny software.

Findings

The performance and science mapping analysis shows that recent research on the digital divide has not been sufficiently exposed and examined. The analysis discovered emerging topics, prolific authors and nations, affiliations, a network of collaboration among authors, countries and institutions, bibliographic coupling and keyword co-occurrence.

Originality/value

This work presents a state-of-the-art that has significant theoretical and practical ramifications for the existing digital divide literature. The methodologies and database used in the current study are more extensive.

Details

Global Knowledge, Memory and Communication, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9342

Keywords

Article
Publication date: 25 July 2023

Aasif Ahmad Mir and Sevukan Rathinam

The study aims to access, monitor and visualize the scientific progress of Twitter-based research through a bibliometric analysis of scientific publications.

Abstract

Purpose

The study aims to access, monitor and visualize the scientific progress of Twitter-based research through a bibliometric analysis of scientific publications.

Design/methodology/approach

The data was retrieved from 2006 to February 23, 2022 using the Web of Science, a leading indexing and abstracting database. In response to the authors’ query, 6,193 items with 101,037 citations, an average citation of 16.31 and an h index of 126 were received. The “Biblioshiny” extension of the “Bibliometrics” package (www.bibliometrix.org) of R software was used to evaluate and visualize the data.

Findings

The present study highlighted the scientific progress of the field evolved over a period of time. The obtained results uncovered the publication trends, productive countries and their collaboration pattern, active authors who nurture the field by making their contribution, prolific source titles adopted by authors to publish the literature on the topic, most productive language in which literature was written, productive institutions, funding agencies that sponsor the research, influential articles, prominent keywords used in publications were also identified which will aid scientists in identifying research gaps in a particular area.

Originality/value

This study comprehensively illustrates the research status of Twitter-related research by conducting a bibliometric analysis. The study’s findings can assist relevant researchers in understanding the research trend, seeking scientific collaborators and funding for their research. Further, the study will act as a ready reference tool for the scientific community to identify research gaps, select research topics and appropriate platforms for submitting their scholarly endeavors.

Details

Global Knowledge, Memory and Communication, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9342

Keywords

1 – 10 of over 1000