Search results

1 – 10 of 142
Article
Publication date: 7 February 2020

Najiyah Safwa Khashi’ie, Norihan Md Arifin, Ioan Pop, Roslinda Nazar, Ezad Hafidz Hafidzuddin and Nadihah Wahi

This paper aims to scrutinize the analysis of non-axisymmetric Homann stagnation point flow and heat transfer of hybrid Cu-Al2O3/water nanofluid over a stretching/shrinking flat…

Abstract

Purpose

This paper aims to scrutinize the analysis of non-axisymmetric Homann stagnation point flow and heat transfer of hybrid Cu-Al2O3/water nanofluid over a stretching/shrinking flat plate.

Design/methodology/approach

The similarity transformation which fulfils the continuity equation is opted to transform the coupled momentum and energy equations into the nonlinear ordinary differential equations. Numerical solutions which are elucidated in the tables and graphs are obtained using the bvp4c solver.

Findings

Non-unique solutions (first and second) are feasible for both stretching and shrinking cases within the specific values of the parameters. First solution is the physical/real solution based on the execution of stability analysis. An upsurge of the ratio of the ambient fluid strain rate to the plate strain rate can delay the boundary layer separation, whereas a boost of the ratio of the ambient fluid shear rate to the plate strain rate only accelerates the separation of boundary layer. The heat transfer rate of hybrid nanofluid is greater for the stretching case than the shrinking case. However, for the shrinking case, the heat transfer rate intensifies with the increment of the copper (Cu) nanoparticles volume fraction, whereas a contrary result is found for the stretching case.

Originality/value

The present numerical results are original and new. It can contribute to other researchers on electing the relevant parameters to optimize the heat transfer process in the modern industry, and the right parameters to generate non-unique solution so that no misjudgment on flow and heat transfer features.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 December 2020

Najiyah Safwa Khashi'ie, Norihan M. Arifin and Ioan Pop

This study aims to analyze the unsteady flow of hybrid Cu-Al2O3/water nanofluid over a permeable stretching/shrinking disc. The analysis of flow stability is also purposed because…

Abstract

Purpose

This study aims to analyze the unsteady flow of hybrid Cu-Al2O3/water nanofluid over a permeable stretching/shrinking disc. The analysis of flow stability is also purposed because of the non-uniqueness of solutions.

Design/methodology/approach

The reduced differential equations (similarity) are solved numerically using the aid of bvp4c solver (Matlab). Two types of thermophysical correlations for hybrid nanofluid (Type 1 and 2) are adopted for the comparison results. Using correlation Type 1, the heat transfer and flow analysis including the profiles (velocity and temperature) are presented in the figures and tables with different values control parameters. Three sets of hybrid nanofluid are analyzed: Set 1 (1% Al2O3 + 1% Cu), Set 2 (0.5% Al2O3 + 1% Cu) and Set 3 (1% Al2O3 + 0.5% Cu).

Findings

The comparison of numerical values between present (Types 1 and 2 correlations) and previous (Type 2 correlations) results are in a good compliance with approximate percent relative error. The appearance of two solutions is noticed when the suction parameter is considered and the unsteady parameter is less than 0 (decelerating flow) for both stretching and shrinking disc while only one solution is possible for steady flow. The hybrid nanofluid in Set 1 can delay the separation of boundary layer but the hybrid nanofluid in Set 3 has the greatest heat transfer rate. Moreover, the inclusion of wall mass suction for stretching case can generate a significant increment of heat transfer rate approximately 90% for all fluids (water, single and hybrid nanofluids).

Originality/value

The present findings are novel and can be a reference point to other researchers to further analyze the heat transfer performance and stability of the working fluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 August 2020

Yogesh Jaluria

This paper aims to discuss inverse problems that arise in a variety of practical thermal processes and systems. It presents some of the approaches that may be used to obtain…

141

Abstract

Purpose

This paper aims to discuss inverse problems that arise in a variety of practical thermal processes and systems. It presents some of the approaches that may be used to obtain results that lie within a small region of uncertainty. Therefore, the non-uniqueness of the solution is reduced so that the final design and boundary conditions may be determined. Optimization methods that may be used to reduce the uncertainty and to select locations for experimental data and for minimizing the error are presented. A few examples of thermal systems are given to illustrate the applicability of these methods and the challenges that must be addressed in solving inverse problems.

Design/methodology/approach

In most analytical and numerical solutions, the basic equations that describe the process, as well as the relevant and appropriate boundary conditions, are known. The interest lies in obtaining a unique solution that satisfies the equations and boundary conditions. This may be termed as a direct or forward solution. However, there are many problems, particularly in practical systems, where the desired result is known but the conditions needed for achieving it are not known. These are generally known as inverse problems. In manufacturing, for instance, the temperature variation to which a component must be subjected to obtain desired characteristics is prescribed, but the means to achieve this variation are not known. An example of this circumstance is the annealing, tempering or hardening of steel. In such cases, the boundary and initial conditions are not known and must be determined by solving the inverse problem to obtain the desired temperature variation in the component. The solutions, thus, obtained are generally not unique. This is a review paper, which discusses inverse problems that arise in a variety of practical thermal processes and systems. It presents some of the approaches or strategies that may be used to obtain results that lie within a small region of uncertainty. It is important to realize that the solution is not unique, and this non-uniqueness must be reduced so that the final design and boundary conditions may be determined with acceptable accuracy and repeatability. Optimization techniques are often used for minimizing the error. This review presents several methods that may be applied to reduce the uncertainty and to select locations for experimental data for the best results. A few examples of thermal systems are given to illustrate the applicability of these methods and the challenges that must be addressed in solving inverse problems. By considering a variety of systems, the paper also shows the importance of solving inverse problems to obtain results that may be used to model and design thermal processes and systems.

Findings

The solution of inverse problems, which frequently arise in thermal processes, is discussed. Different strategies to obtain the conditions that lead to the desired result are given. The goal of these approaches is to reduce uncertainty and obtain essentially unique solutions for different circumstances. The error of the method can be checked against known conditions to see if it is acceptable for the given problem. Several examples are given to illustrate the use of these methods.

Originality/value

The basic strategies presented here for solving inverse problems that arise in thermal processes and systems, as well as the optimization techniques used to reduce the domain of uncertainty, are fairly original. They are used for certain challenging problems that have not been considered in detail earlier. Several methods are outlined for considering different types of problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 July 2020

Nur Syazana Anuar, Norfifah Bachok and Ioan Pop

This paper aims to discuss a stability analysis on Cu-Al2O3/water nanofluid having a radiation and suction impacts over a rotating stretching/shrinking sheet.

Abstract

Purpose

This paper aims to discuss a stability analysis on Cu-Al2O3/water nanofluid having a radiation and suction impacts over a rotating stretching/shrinking sheet.

Design/methodology/approach

The partial differential equations are converted into nonlinear ordinary differential equations using similarity transformation and then being solved numerically using built in function in Matlab software (bvp4c). The effects of pertinent parameters on the temperature and velocity profiles together with local Nusselt number and skin friction are reported.

Findings

Compared to previously published studies, the current work is noticed to be in good deal. The analysis further shows that the non-unique solutions exist for certain shrinking parameter values. Hence, a stability analysis is executed using a linear temporal stability analysis and concluded that the second solution is unstable, while the first solution is stable. The effect of suction parameter is observed to be significant in obtaining the solutions. The improvement of the local skin friction and the decrease of the local Nusselt number on the shrinking surface are observed with the increment of the copper nanoparticle volume fractions.

Originality/value

The originality of current work is the numerical solutions and stability analysis of hybrid nanofluid in rotating flow. This work has also resulted in producing the non-unique solutions for the shrinking sheet, and a stability analysis has also been executed for this flow showing that the second solution is unstable, while the first solution is stable. This paper is therefore valuable for engineers and scientist to get acquainted with the properties of the flow, its behavior and the way to predict it. The authors admit that all the findings are original and were not published anywhere else.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 April 2021

Shuliang Li, Ke Gong, Bo Zeng, Wenhao Zhou, Zhouyi Zhang, Aixing Li and Li Zhang

The purpose of this paper is to overcome the weakness of the traditional model, in which the grey action quantity is a real number and thus leads to a “unique solution” and to…

Abstract

Purpose

The purpose of this paper is to overcome the weakness of the traditional model, in which the grey action quantity is a real number and thus leads to a “unique solution” and to build the model with a trapezoidal possibility degree function.

Design/methodology/approach

Using the system input and output block diagram of the model, the interval grey action quantity is restored under the condition of insufficient system influencing factors, and the trapezoidal possibility degree function is formed. Based on that, a new model able to output non-unique solutions is constructed.

Findings

The model satisfies the non-unique solution principle of the grey theory under the condition of insufficient information. The model is compatible with the traditional model in structure and modelling results. The validity and practicability of the new model are verified by applying it in simulating the ecological environment water consumption in the Yangtze River basin.

Practical implications

In this study, the interval grey number form of grey action quantity is restored under the condition of insufficient system influencing factors, and the unique solution to the problem of the traditional model is solved. It is of great value in enriching the theoretical system of grey prediction models.

Social implications

Taking power consumption as an example, the accurate prediction of the future power consumption level is related to the utilization efficiency of the power infrastructure investment. If the prediction of the power consumption level is too low, it will lead to the insufficient construction of the power infrastructure and the frequent occurrence of “power shortage” in the power industry. If the prediction is too high, it will lead to excessive investment in the power infrastructure. As a result, the overall surplus of power supply will lead to relatively low operation efficiency. Therefore, building an appropriate model for the correct interval prediction is a better way to solve such problems. The model proposed in this study is an effective one to solve such problems.

Originality/value

A new grey prediction model with its interval grey action quantity based on the trapezoidal possibility degree function is proposed for the first time.

Details

Grey Systems: Theory and Application, vol. 12 no. 2
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 3 October 2019

Mohamad Mustaqim Junoh, Fadzilah Md Ali, Norihan Md Arifin, Norfifah Bachok and Ioan Pop

The purpose of this paper is to investigate the steady magnetohydrodynamics (MHD) boundary layer stagnation-point flow of an incompressible, viscous and electrically conducting…

Abstract

Purpose

The purpose of this paper is to investigate the steady magnetohydrodynamics (MHD) boundary layer stagnation-point flow of an incompressible, viscous and electrically conducting fluid past a stretching/shrinking sheet with the effect of induced magnetic field.

Design/methodology/approach

The governing nonlinear partial differential equations are transformed into a system of nonlinear ordinary differential equations via the similarity transformations before they are solved numerically using the “bvp4c” function in MATLAB.

Findings

It is found that there exist non-unique solutions, namely, dual solutions for a certain range of the stretching/shrinking parameters. The results from the stability analysis showed that the first solution (upper branch) is stable and valid physically, while the second solution (lower branch) is unstable.

Practical implications

This problem is important in the heat transfer field such as electronic cooling, engine cooling, generator cooling, welding, nuclear system cooling, lubrication, thermal storage, solar heating, cooling and heating in buildings, biomedical, drug reduction, heat pipe, space aircrafts and ships with better efficiency than that of nanofluids applicability. The results obtained are very useful for researchers to determine which solution is physically stable, whereby, mathematically more than one solution exist.

Originality/value

The present results are new and original for the problem of MHD stagnation-point flow over a stretching/shrinking sheet in a hybrid nanofluid, with the effect of induced magnetic field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Abstract

Details

Mathematical and Economic Theory of Road Pricing
Type: Book
ISBN: 978-0-08-045671-3

Article
Publication date: 1 June 2004

Olivier Chadebec, Jean‐Louis Coulomb, Gilles Cauffet, Jean‐Paul Bongiraud and Sébastien Guérin

This paper deals with the problem of magnetization identification. We consider a ferromagnetic body placed in an inductor field. The goal of this work is, from static magnetic…

Abstract

This paper deals with the problem of magnetization identification. We consider a ferromagnetic body placed in an inductor field. The goal of this work is, from static magnetic field measurements taken around the device, to obtain an accurate model of its magnetization. This inverse problem is usually ill‐posed and its solution is non‐unique. It is then necessary to use mathematical regularization. However, we prefer to transform it to a better posed one by incorporating our physical knowledge of the problem. Our approach is tested on the magnetization's identification of a real ferromagnetic sheet.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 23 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 27 September 2021

Ioan Pop, Mohammadreza Nademi Rostami and Saeed Dinarvand

The purpose of this article is to study the steady laminar magnetohydrodynamics mixed convection stagnation-point flow of an alumina-graphene/water hybrid nanofluid with spherical…

Abstract

Purpose

The purpose of this article is to study the steady laminar magnetohydrodynamics mixed convection stagnation-point flow of an alumina-graphene/water hybrid nanofluid with spherical nanoparticles over a vertical permeable plate with focus on dual similarity solutions.

Design/methodology/approach

The single-phase hybrid nanofluid modeling is based on nanoparticles and base fluid masses instead of volume fraction of first and second nanoparticles as inputs. After substituting pertinent similarity variables into the basic partial differential equations governing on the problem, the authors obtain a complicated system of nondimensional ordinary differential equations, which has non-unique solution in a certain range of the buoyancy parameter. It is worth mentioning that, the stability analysis of the solutions is also presented and it is shown that always the first solutions are stable and physically realizable.

Findings

It is proved that the magnetic parameter and the wall permeability parameter widen the range of the buoyancy parameter for which the solution exists; however, the opposite trend is valid for second nanoparticle mass. Besides, mass suction at the surface of the plate as well as magnetic parameter leads to reduce both hydrodynamic and thermal boundary layer thicknesses. Moreover, the assisting flow regime always has higher values of similarity skin friction and Nusselt number relative to opposing flow regime.

Originality/value

A novel mass-based model of the hybridity in nanofluids has been used to study the foregoing problem with focus on dual similarity solutions. The results of this paper are completely original and, to the best of the authors’ knowledge, the numerical results of the present paper were never published by any researcher.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 13 May 2020

Iskandar Waini, Anuar Ishak and Ioan Pop

This paper aims to examine the hybrid nanofluid flow towards a stagnation point on an exponentially stretching/shrinking vertical sheet with buoyancy effects.

Abstract

Purpose

This paper aims to examine the hybrid nanofluid flow towards a stagnation point on an exponentially stretching/shrinking vertical sheet with buoyancy effects.

Design/methodology/approach

Here, the authors consider copper (Cu) and alumina (Al2O3) as hybrid nanoparticles while water as the base fluid. The governing equations are reduced to the similarity equations using similarity transformations. The resulting equations are programmed in Matlab software through the bvp4c solver to obtain their solutions.

Findings

The authors found that the heat transfer rate is greater for Al2O3-Cu/water hybrid nanofluid if compared to Cu/water nanofluid. Besides, the non-uniqueness of the solutions is observed for certain physical parameters. The authors also notice that the bifurcation of the solutions occurs in the downward buoyant force and the shrinking regions. In addition, the first solution of the skin friction and heat transfer coefficients increase with the added hybrid nanoparticles and the mixed convection parameter. The temporal stability analysis shows that one of the solutions is stable as time evolves.

Originality/value

The present work is dealing with the problem of a mixed convection flow of a hybrid nanofluid towards a stagnation point on an exponentially stretching/shrinking vertical sheet, with the buoyancy effects is taken into consideration. The authors show that two solutions are obtained for a single value of parameter for both stretching and shrinking cases, as well as for both buoyancy aiding and opposing flows. A temporal stability analysis then shows that only one of the solutions is stable and physically reliable as time evolves.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 142