To read this content please select one of the options below:

Strategies for solving inverse problems in thermal processes and systems

Yogesh Jaluria (Department of Mechanical Engineering, Rutgers University, Piscataway, New Jersey, USA)

International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 7 August 2020

Issue publication date: 15 September 2021

141

Abstract

Purpose

This paper aims to discuss inverse problems that arise in a variety of practical thermal processes and systems. It presents some of the approaches that may be used to obtain results that lie within a small region of uncertainty. Therefore, the non-uniqueness of the solution is reduced so that the final design and boundary conditions may be determined. Optimization methods that may be used to reduce the uncertainty and to select locations for experimental data and for minimizing the error are presented. A few examples of thermal systems are given to illustrate the applicability of these methods and the challenges that must be addressed in solving inverse problems.

Design/methodology/approach

In most analytical and numerical solutions, the basic equations that describe the process, as well as the relevant and appropriate boundary conditions, are known. The interest lies in obtaining a unique solution that satisfies the equations and boundary conditions. This may be termed as a direct or forward solution. However, there are many problems, particularly in practical systems, where the desired result is known but the conditions needed for achieving it are not known. These are generally known as inverse problems. In manufacturing, for instance, the temperature variation to which a component must be subjected to obtain desired characteristics is prescribed, but the means to achieve this variation are not known. An example of this circumstance is the annealing, tempering or hardening of steel. In such cases, the boundary and initial conditions are not known and must be determined by solving the inverse problem to obtain the desired temperature variation in the component. The solutions, thus, obtained are generally not unique. This is a review paper, which discusses inverse problems that arise in a variety of practical thermal processes and systems. It presents some of the approaches or strategies that may be used to obtain results that lie within a small region of uncertainty. It is important to realize that the solution is not unique, and this non-uniqueness must be reduced so that the final design and boundary conditions may be determined with acceptable accuracy and repeatability. Optimization techniques are often used for minimizing the error. This review presents several methods that may be applied to reduce the uncertainty and to select locations for experimental data for the best results. A few examples of thermal systems are given to illustrate the applicability of these methods and the challenges that must be addressed in solving inverse problems. By considering a variety of systems, the paper also shows the importance of solving inverse problems to obtain results that may be used to model and design thermal processes and systems.

Findings

The solution of inverse problems, which frequently arise in thermal processes, is discussed. Different strategies to obtain the conditions that lead to the desired result are given. The goal of these approaches is to reduce uncertainty and obtain essentially unique solutions for different circumstances. The error of the method can be checked against known conditions to see if it is acceptable for the given problem. Several examples are given to illustrate the use of these methods.

Originality/value

The basic strategies presented here for solving inverse problems that arise in thermal processes and systems, as well as the optimization techniques used to reduce the domain of uncertainty, are fairly original. They are used for certain challenging problems that have not been considered in detail earlier. Several methods are outlined for considering different types of problems.

Keywords

Acknowledgements

The author acknowledges the discussions with Professor C.E. Polymeropoulos and the work of several students, particularly Ardeshir B. Tabrizi. The support of the National Science Foundation for portions of this study is acknowledged.

Citation

Jaluria, Y. (2021), "Strategies for solving inverse problems in thermal processes and systems", International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 31 No. 10, pp. 3073-3088. https://doi.org/10.1108/HFF-12-2019-0926

Publisher

:

Emerald Publishing Limited

Copyright © 2020, Emerald Publishing Limited

Related articles