Search results

1 – 10 of 10
Article
Publication date: 14 March 2023

Florence Dami Ayegbusi, Emile Franc Doungmo Goufo and Patrick Tchepmo

The purpose of this study is to explore numerical scrutinization of micropolar and Walters-B non-Newtonian fluids motion under the influence of thermal radiation and chemical…

Abstract

Purpose

The purpose of this study is to explore numerical scrutinization of micropolar and Walters-B non-Newtonian fluids motion under the influence of thermal radiation and chemical reaction.

Design/methodology/approach

The two fluids micropolar and Walters-B liquid are considered to start flowing from the slot to the stretching sheet. A magnetic field of constant strength is imposed on their flow transversely. The problems on heat and mass transport are set up with thermal, chemical reaction, heat generation, etc. to form partial differential equations. These equations were simplified into a dimensionless form and solved using spectral homotopy analysis method (SHAM). SHAM uses the basic concept of both Chebyshev pseudospectral method and homotopy analysis method to obtain numerical computations of the problem.

Findings

The outcomes for encountered flow parameters for temperature, velocity and concentration are presented with the aid of figures. It is observed that both the velocity and angular velocity of micropolar and Walters-B and thermal boundary layers increase with increase in the thermal radiation parameter. The decrease in velocity and decrease in angular velocity occurred are a result of increase in chemical reaction. It is hoped that the present study will enhance the understanding of boundary layer flow of micropolar and Walters-B non-Newtonian fluid under the influences of thermal radiation, thermal conductivity and chemical reaction as applied in various engineering processes.

Originality/value

All results are presented graphically and all physical quantities are computed and tabulated.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 April 2024

Reima Daher Alsemiry, Rabea E. Abo Elkhair, Taghreed H. Alarabi, Sana Abdulkream Alharbi, Reem Allogmany and Essam M. Elsaid

Studying the shear stress and pressure resulting on the walls of blood vessels, especially during high-pressure cases, which may lead to the explosion or rupture of these vessels…

Abstract

Purpose

Studying the shear stress and pressure resulting on the walls of blood vessels, especially during high-pressure cases, which may lead to the explosion or rupture of these vessels, can also lead to the death of many patients. Therefore, it was necessary to try to control the shear and normal stresses on these veins through nanoparticles in the presence of some external forces, such as exposure to some electromagnetic shocks, to reduce the risk of high pressure and stress on those blood vessels. This study aims to examines the shear and normal stresses of electroosmotic-magnetized Sutterby Buongiorno’s nanofluid in a symmetric peristaltic channel with a moderate Reynolds number and curvature. The production of thermal radiation is also considered. Sutterby nanofluids equations of motion, energy equation, nanoparticles concentration, induced magnetic field and electric potential are calculated without approximation using small and long wavelengths with moderate Reynolds numbers.

Design/methodology/approach

The Adomian decomposition method solves the nonlinear partial differential equations with related boundary conditions. Graphs and tables show flow features and biophysical factors like shear and normal stresses.

Findings

This study found that when curvature and a moderate Reynolds number are present, the non-Newtonian Sutterby fluid raises shear stress across all domains due to velocity decay, resulting in high shear stress. Additionally, modest mobility increases shear stress across all channel domains. The Sutterby parameter causes fluid motion resistance, which results in low energy generation and a decrease in the temperature distribution.

Originality/value

Equations of motion, energy equation, nanoparticle concentration, induced magnetic field and electric potential for Sutterby nano-fluids are obtained without any approximation i.e. the authors take small and long wavelengths and also moderate Reynolds numbers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 2024

Ashish Paul, Bhagyashri Patgiri and Neelav Sarma

Flow induced by rotating disks is of great practical importance in several engineering applications such as rotating heat exchangers, turbine disks, pumps and many more. The…

Abstract

Purpose

Flow induced by rotating disks is of great practical importance in several engineering applications such as rotating heat exchangers, turbine disks, pumps and many more. The present research has been freshly displayed regarding the implementation of an engine oil-based Casson tri-hybrid nanofluid across a rotating disk in mass and heat transferal developments. The purpose of this study is to contemplate the attributes of the flowing tri-hybrid nanofluid by incorporating porosity effects and magnetization and velocity slip effects, viscous dissipation, radiating flux, temperature slip, chemical reaction and activation energy.

Design/methodology/approach

The articulated fluid flow is described by a set of partial differential equations which are converted into one set of higher-order ordinary differential equations (ODEs) by using convenient conversions. The numerical solution of this transformed set of ODEs has been spearheaded by using the effectual bvp4c scheme.

Findings

The acquired results show that the heat transmission rate for the Casson tri-hybrid nanofluid is intensified by, respectively, 9.54% and 11.93% when compared to the Casson hybrid nanofluid and Casson nanofluid. Also, the mass transmission rate for the Casson tri-hybrid nanofluid is augmented by 1.09% and 2.14%, respectively, when compared to the Casson hybrid nanofluid and Casson nanofluid.

Originality/value

The current investigation presents an educative response on how the flow profiles vary with changes in the inevitable flow parameters. As per authors’ knowledge, no such scrutinization has been carried out previously; therefore, our results are novel and unique.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 April 2024

Farooq H. Ali, Mushtaq F. Almensoury, Atheer Saad Hashim, Qusay Rasheed Al-Amir, Hameed K. Hamzah and M. Hatami

This paper aims to study the effect of concentric hot circular cylinder inside egg-cavity porous-copper nanofluid on natural convection phenomena.

Abstract

Purpose

This paper aims to study the effect of concentric hot circular cylinder inside egg-cavity porous-copper nanofluid on natural convection phenomena.

Design/methodology/approach

The finite element method–based Galerkin approach is applied to solve numerically the set of governing equations with appropriate boundary conditions.

Findings

The effects of different range parameters, such as Darcy number (10–3 = Da = 10–1), Rayleigh number (103 = Ra = 106), nanoparticle volume fraction (0 = ϑ = 0.06) and eccentricity (−0.3 = e = 0.1) on the fluid flow represent by stream function and heat transfer represent by temperature distribution, local and average Nusselt numbers.

Research limitations/implications

A comparison between oval shape and concentric circular concentric cylinder was investigated.

Originality/value

In the current numerical study, heat transfer by natural convection was identified inside the new design of egg-shaped cavity as a result of the presence of a circular inside it supported by a porous medium filled with a nanofluid. After reviewing previous studies and considering the importance of heat transfer by free convection inside tubes for many applications, to the best of the authors’ knowledge, the current work is the first study that deals with a study and comparison between the common shape (concentric circular tubes) and the new shape (egg-shaped cavity).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 April 2024

Xue Nan, Xuan Chao Huang, Mengyao Huang, Xuefan Wang, Youping Zhu, Yayun Li, Shifei Shen and Ming Fu

The present study assesses the impact resistance of the shear thickening fluids-filled (STFs-filled) foam through drop-hammer impact tests.

Abstract

Purpose

The present study assesses the impact resistance of the shear thickening fluids-filled (STFs-filled) foam through drop-hammer impact tests.

Design/methodology/approach

The maximum residual impact load and specific impact energy absorption rate of STF-filled foam are studied with varying thickness (4–14 mm), densities (0.35–0.6 g/cm3) and hardness (40–50 Rockwell Hardness C Scale (HRC)) under different ambient temperatures (−20−20 °C) and impact energies (25–75 J).

Findings

The following conclusions are obtained from this study: (1) the higher the impact energy, the greater the maximum residual impact force and energy absorption efficiency of the material; (2) the impact resistance of STF-filled foam can be improved with the decrease of ambient temperature, achieving the highest energy absorption rate at −10?. (3) STF-filled foam substrate has the highest impact resistance, the lowest maximum residual impact force and the highest energy absorption coefficient when the density is 0.35  g/cm3, the hardness is 45HC and the thickness is 10 mm.

Originality/value

This is the first paper to analyze the impact of both environmental factors and material properties on the impact resistance of STF-filled foam. The results show that the decrease in temperature and the increase in hardness can enhance the impact resistance of STF-filled foam.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 30 April 2024

Dongju Chen, Yupeng Zhao, Kun Sun, Ri Pan and Jinwei Fan

To enhance the performance of hydrostatic bearings, graphene serves as a lubricant additive. Using the high thermal conductivity of graphene, the purpose of this study is to focus…

Abstract

Purpose

To enhance the performance of hydrostatic bearings, graphene serves as a lubricant additive. Using the high thermal conductivity of graphene, the purpose of this study is to focus on the impact of graphene nano-lubricating oil hydrostatic bearing temperature rise at various speeds and eccentricities.

Design/methodology/approach

The thermal conductivity of graphene nano-lubricating oil was calculated by molecular dynamics method and based on the viscosity–temperature effect, the coupled heat transfer finite element model of hydrostatic bearing was established; temperature rise of pure lubricating oil and graphene nano-lubricating oil hydrostatic bearing were analysed at different speed and eccentricity based on computational fluid dynamics method.

Findings

With the increase of speed and eccentricity, the temperature rise of 0.2% graphene nano-lubricating oil bearings is lower than that of pure lubricating oil bearings; in addition with the increase of graphene mass fraction, the temperature rise of graphene nano-lubricating oil bearings is always higher than that of pure lubricating oil bearings, and the higher the speed, the more obvious the phenomenon.

Originality/value

The effects of graphene as a lubricant additive on the thermal conductivity of nano-lubricating oil and the variation of the temperature rise of graphene nano-lubricating oil bearings compared to pure lubricating oil bearings were analysed by combining micro and macro methods.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0388

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 May 2024

Zhenshun Li, Jiaqi Li, Ben An and Rui Li

This paper aims to find the best method to predict the friction coefficient of textured 45# steel by comparing different machine learning algorithms and analytical calculations.

Abstract

Purpose

This paper aims to find the best method to predict the friction coefficient of textured 45# steel by comparing different machine learning algorithms and analytical calculations.

Design/methodology/approach

Five machine learning algorithms, including K-nearest neighbor, random forest, support vector machine (SVM), gradient boosting decision tree (GBDT) and artificial neural network (ANN), are applied to predict friction coefficient of textured 45# steel surface under oil lubrication. The superiority of machine learning is verified by comparing it with analytical calculations and experimental results.

Findings

The results show that machine learning methods can accurately predict friction coefficient between interfaces compared to analytical calculations, in which SVM, GBDT and ANN methods show close prediction performance. When texture and working parameters both change, sliding speed plays the most important role, indicating that working parameters have more significant influence on friction coefficient than texture parameters.

Originality/value

This study can reduce the experimental cost and time of textured 45# steel, and provide a reference for the widespread application of machine learning in the friction field in the future.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 May 2024

Changhyun (Lyon) Nam, Mitchell Lewis Stephenson, Chunhui Xiang and Eulanda Sanders

This study aimed to compare the performance of sustainable shoes made with bacterial cellulosic composite and commercial leather shoes using an experimental research design. The…

Abstract

Purpose

This study aimed to compare the performance of sustainable shoes made with bacterial cellulosic composite and commercial leather shoes using an experimental research design. The two specific research objectives were: (1) to examine the basic material properties of multi-layered bacterial cellulosic materials (MBC), which include green tea-based cellulosic (GBC) mats, hemp fabrics, and denim fabrics, in comparison with those of two-layered leathers (MCP) consisting of calf-skin and pig-skin – commonly used in shoe manufacturing; and (2) to explore wearers’ performance in the two types of shoes by assessing quantitative kinematic and kinetic parameters of lower body movements.

Design/methodology/approach

This study focused on assessing the basic materials testing and performance of sustainable shoes through a biomechanical approach, in contrast to commercially available leather shoes, through human wear trials. In this study, green tea-based cellulosic (GBC) mats were developed using the optimal combination of ingredients for cellulose growth. Subsequently, the GBC, denim fabric (100% cotton), and 100% hemp fabric were combined to create multi-layered bacterial cellulosic materials (MBC) as an alternative to leather. Additionally, calf-skin and pig-skin leathers were utilized to produce a commercially available two-layered leather (MCP), commonly employed in shoe manufacturing. 37 of the 42 human subjects who participated in wear testing were collected. A paired t-test was conducted to determine whether significant mean differences existed between the two shoe types, a paired t-test was conducted.

Findings

To develop a biodegradable and compostable material that could be used as a leather alternative for the footwear industry, we proposed MBC and examined its properties compared with those of MCP, a product often used when making shoes. These findings confirmed the similar properties of MBC and MCP from the material testing and the possibility of using a men’s sustainable shoe prototype as a leather alternative, in terms of kinematics and kinetics.

Practical implications

The new multi-layered bacterial cellulosic materials (MBC) could be an alternative to commercial leathers such as innovative sustainable material construction, advanced design, and advanced techniques to optimize the overall performance of sustainable footwear.

Originality/value

Investigating the integration of smart textile technologies, ergonomic design principles, and personalized customization will contribute to developing MBC and making sustainable shoes using MBC compared with commercial leather shoes. This study provides valuable insights into further refinement and innovation in the sustainable footwear industry.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 4 April 2023

Chinedu Chinakwe, Adekunle Adelaja, Michael Akinseloyin and Olabode Thomas Olakoyejo

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to…

Abstract

Purpose

Inclination angle has been reported to have an enhancing effect on the thermal-hydraulic characteristics and entropy of some thermal systems. Therefore, this paper aims to numerically investigate the effects of inclination angle, volume concentration and Reynolds number on the thermal and hydraulic characteristics and entropy generation rates of water-based Al2O3 nanofluids through a smooth circular aluminum pipe in a turbulent flow.

Design/methodology/approach

A constant heat flux of 2,000 Watts is applied to the circular surface of the tube. Reynolds number is varied between 4,000 and 20,000 for different volume concentrations of alumina nanoparticles of 0.5%, 1.0% and 2.0% for tube inclination angles of ±90o, ±60o, ±45o, ±30o and 0o, respectively. The simulation is performed in an ANSYS Fluent environment using the realizable kinetic energy–epsilon turbulent model.

Findings

Results show that +45o tube orientation possesses the largest thermal deviations of 0.006% for 0.5% and 1.0% vol. concentrations for Reynolds numbers 4,000 and 12,000. −45o gives a maximum pressure deviation of −0.06% for the same condition. The heat transfer coefficient and pressure drop give maximum deviations of −0.35% and −0.39%, respectively, for 2.0% vol. concentration for Reynolds number of 20,000 and angle ±90o. A 95%–99.8% and 95%–98% increase in the heat transfer and total entropy generation rates, respectively, is observed for 2.0% volume concentration as tube orientation changes from the horizontal position upward or downward.

Originality/value

Research investigating the effect of inclination angle on thermal-hydraulic performance and entropy generation rates in-tube turbulent flow of nanofluid is very scarce in the literature.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 5 April 2024

Rahul Soni, Madhvi Sharma, Ponappa K. and Puneet Tandon

In pursuit of affordable and nutrient-rich food alternatives, the symbiotic culture of bacteria and yeast (SCOBY) emerged as a selected food ink for 3D printing. The purpose of…

Abstract

Purpose

In pursuit of affordable and nutrient-rich food alternatives, the symbiotic culture of bacteria and yeast (SCOBY) emerged as a selected food ink for 3D printing. The purpose of this paper is to harness SCOBY’s potential to create cost-effective and nourishing food options using the innovative technique of 3D printing.

Design/methodology/approach

This work presents a comparative analysis of the printability of SCOBY with blends of wheat flour, with a focus on the optimization of process variables such as printing composition, nozzle height, nozzle diameter, printing speed, extrusion motor speed and extrusion rate. Extensive research was carried out to explore the diverse physical, mechanical and rheological properties of food ink.

Findings

Among the ratios tested, SCOBY, with SCOBY:wheat flour ratio at 1:0.33 exhibited the highest precision and layer definition when 3D printed at 50 and 60 mm/s printing speeds, 180 rpm motor speed and 0.8 mm nozzle with a 0.005 cm3/s extrusion rate, with minimum alteration in colour.

Originality/value

Food layered manufacturing (FLM) is a novel concept that uses a specialized printer to fabricate edible objects by layering edible materials, such as chocolate, confectionaries and pureed fruits and vegetables. FLM is a disruptive technology that enables the creation of personalized and texture-tailored foods, incorporating desired nutritional values and food quality, using a variety of ingredients and additions. This research highlights the potential of SCOBY as a viable material for 3D food printing applications.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 10