Search results

1 – 10 of 151
Open Access
Article
Publication date: 25 April 2023

Rene Prieler, Simon Pletzer, Stefan Thusmer, Günther Schwabegger and Christoph Hochenauer

In fire resistance tests (FRTs) of building materials, a crucial criterion to pass the test procedure is to avoid the leakage of the hot flue gases caused by gaps and cracks…

Abstract

Purpose

In fire resistance tests (FRTs) of building materials, a crucial criterion to pass the test procedure is to avoid the leakage of the hot flue gases caused by gaps and cracks occurring due to the thermal exposure. The present study's aim is to calculate the deformation of a steel door, which is embedded within a wall made of bricks, and qualitatively determine the flue gas leakage.

Design/methodology/approach

A computational fluid dynamics/finite element method (CFD/FEM) coupling was introduced representing an intermediate approach between a one-way and a full two-way coupling methodology, leading to a simplified two-way coupling (STWC). In contrast to a full two way-coupling, the heat transfer through the steel door was simulated based on a one-way approach. Subsequently, the predicted temperatures at the door from the one-way simulation were used in the following CFD/FEM simulation, where the fluid flow inside and outside the furnace as well as the deformation of the door were calculated simultaneously.

Findings

The simulation showed large gaps and flue gas leakage above the door lock and at the upper edge of the door, which was in close accordance to the experiment. Furthermore, it was found that STWC predicted similar deformations compared to the one-way coupling.

Originality/value

Since two-way coupling approaches for fluid/structure interaction in fire research are computationally demanding, the number of studies is low. Only a few are dealing with the flue gas exit from rooms due to destruction of solid components. Thus, the present study is the first two-way approach dealing with flue gas leakage due to gap formation.

Details

Journal of Structural Fire Engineering, vol. 15 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Open Access
Article
Publication date: 17 October 2018

Decheng Li, Tiannian Zhou, Zegong Liu and Jian Wang

The purpose of this study is to investigate the transport phenomena of smoke flow in a semi-open vertical shaft.

1039

Abstract

Purpose

The purpose of this study is to investigate the transport phenomena of smoke flow in a semi-open vertical shaft.

Design/methodology/approach

The large eddy simulation (LES) method was used to model the movement of fire-induced thermal flow in a full-scale vertical shaft. With this model, different fire locations and heat release rates (HRRs) were considered simultaneously.

Findings

It was determined that the burning intensity of the fire is enhanced when the fire attaches to the sidewall, resulting in a larger continuous flame region in the compartment and higher temperatures of the spill plume in the shaft compared to a center fire. In the initial stage of the fire with a small HRR, the buoyancy-driven spill plumes incline toward the side of the shaft opposite the window. Meanwhile, the thermal plumes are also directed away from the center of the shaft by the entrained airflow, but the inclination diminishes as HRR increases. This is because a greater HRR produces higher temperatures, resulting in a stronger buoyancy to drive smoke movement evenly in the shaft. In addition, a dimensionless equation was proposed to predict the rise-time of the smoke plume front in the shaft.

Research limitations/implications

The results need to be verified with experiments.

Practical implications

The results could be applied for design and assessment of semi-open shafts.

Originality/value

This study shows the transport phenomena of smoke flow in a vertical shaft with one open side.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 31 July 2019

Ning Ma, Can Li and Yang Zuo

Forest insurance is a popular way to reduce the loss of forest disasters, so it is necessary to actively involve stakeholders. In the multi-agent simulation model, the government…

Abstract

Purpose

Forest insurance is a popular way to reduce the loss of forest disasters, so it is necessary to actively involve stakeholders. In the multi-agent simulation model, the government, insurance companies and forest farmers participate as three main stakeholders. The purpose of this paper is to mainly simulate the behavior of forest farmers under different environmental variables in order to find the important factors affecting the coverage of forest insurance, so as to improve the ability of forest farmers to resist risks in the face of disasters.

Design/methodology/approach

In the simulation process, the decision-making rule of a forest farmer’s purchasing behavior is a binary selection chain, which is created at random. Forest farmer agents who adapt to the environment will remain; on the contrary, those will be eliminated. The eliminated agents will renew their behavior selection chains through learning others’ successful behavior based on genetic algorithm. The multi-agent mode is set up on the Eclipse platform by using Java language.

Findings

The adjustment simulation experiments of insurance premium, insurance subsidy and forest area were carried out. According to the result, conclusions and suggestions are as follows: at present, government subsidies are necessary for the implementation of forest insurance; in the future, with the expansion of the insured forest area and the upgrading and large-scale operation of forest farms, forest farmers will be more willing to join forest insurance program, and, then, the implementation of forest insurance no longer requires government subsidies for forest insurance premiums.

Originality/value

This paper explores the impact of three important factors on the implementation of forest insurance.

Details

Forestry Economics Review, vol. 1 no. 1
Type: Research Article
ISSN: 2631-3030

Keywords

Open Access
Article
Publication date: 21 August 2019

Shaikh Shamim Hasan, Yue Zhang, Xi Chu and Yanmin Teng

Forest as a vital natural resource in China plays an irreplaceable important role in safeguarding ecological security and human survival and development. Due to the vast…

2981

Abstract

Purpose

Forest as a vital natural resource in China plays an irreplaceable important role in safeguarding ecological security and human survival and development. Due to the vast territory, huge population and widespread forest landscape of China, forest management is a complex system involving massive data and various management activities. To effectively implement sustainable forest management, the big data technology has been utilized to analyze China’s forestry resources. Thus, the purpose of this paper is to clarify the role of big data technology in China’s forest management.

Design/methodology/approach

In this paper, the authors revisited the roles of big data in forest ecosystem monitoring, forestry management system development, and forest policy implementation.

Findings

It demonstrates that big data technology has a great potential in forest ecosystem protection and management, as well as the government’s determination for forest ecosystem protection. However, to deepen the application of big data in forest management, several challenges still need to be tackled.

Originality/value

Thus, enhancing modern science and technology to improve big data, cloud computing, and information technologies and their combinations will contribute to tackle the challenges and achieve wisdom of forest management.

Details

Forestry Economics Review, vol. 1 no. 1
Type: Research Article
ISSN: 2631-3030

Keywords

Content available
Book part
Publication date: 4 December 2018

Gregory Coutaz

Abstract

Details

Coping with Disaster Risk Management in Northeast Asia: Economic and Financial Preparedness in China, Taiwan, Japan and South Korea
Type: Book
ISBN: 978-1-78743-093-8

Content available
Article
Publication date: 13 November 2023

Sheuli Paul

This paper presents a survey of research into interactive robotic systems for the purpose of identifying the state of the art capabilities as well as the extant gaps in this…

1061

Abstract

Purpose

This paper presents a survey of research into interactive robotic systems for the purpose of identifying the state of the art capabilities as well as the extant gaps in this emerging field. Communication is multimodal. Multimodality is a representation of many modes chosen from rhetorical aspects for its communication potentials. The author seeks to define the available automation capabilities in communication using multimodalities that will support a proposed Interactive Robot System (IRS) as an AI mounted robotic platform to advance the speed and quality of military operational and tactical decision making.

Design/methodology/approach

This review will begin by presenting key developments in the robotic interaction field with the objective of identifying essential technological developments that set conditions for robotic platforms to function autonomously. After surveying the key aspects in Human Robot Interaction (HRI), Unmanned Autonomous System (UAS), visualization, Virtual Environment (VE) and prediction, the paper then proceeds to describe the gaps in the application areas that will require extension and integration to enable the prototyping of the IRS. A brief examination of other work in HRI-related fields concludes with a recapitulation of the IRS challenge that will set conditions for future success.

Findings

Using insights from a balanced cross section of sources from the government, academic, and commercial entities that contribute to HRI a multimodal IRS in military communication is introduced. Multimodal IRS (MIRS) in military communication has yet to be deployed.

Research limitations/implications

Multimodal robotic interface for the MIRS is an interdisciplinary endeavour. This is not realistic that one can comprehend all expert and related knowledge and skills to design and develop such multimodal interactive robotic interface. In this brief preliminary survey, the author has discussed extant AI, robotics, NLP, CV, VDM, and VE applications that is directly related to multimodal interaction. Each mode of this multimodal communication is an active research area. Multimodal human/military robot communication is the ultimate goal of this research.

Practical implications

A multimodal autonomous robot in military communication using speech, images, gestures, VST and VE has yet to be deployed. Autonomous multimodal communication is expected to open wider possibilities for all armed forces. Given the density of the land domain, the army is in a position to exploit the opportunities for human–machine teaming (HMT) exposure. Naval and air forces will adopt platform specific suites for specially selected operators to integrate with and leverage this emerging technology. The possession of a flexible communications means that readily adapts to virtual training will enhance planning and mission rehearsals tremendously.

Social implications

Interaction, perception, cognition and visualization based multimodal communication system is yet missing. Options to communicate, express and convey information in HMT setting with multiple options, suggestions and recommendations will certainly enhance military communication, strength, engagement, security, cognition, perception as well as the ability to act confidently for a successful mission.

Originality/value

The objective is to develop a multimodal autonomous interactive robot for military communications. This survey reports the state of the art, what exists and what is missing, what can be done and possibilities of extension that support the military in maintaining effective communication using multimodalities. There are some separate ongoing progresses, such as in machine-enabled speech, image recognition, tracking, visualizations for situational awareness, and virtual environments. At this time, there is no integrated approach for multimodal human robot interaction that proposes a flexible and agile communication. The report briefly introduces the research proposal about multimodal interactive robot in military communication.

Open Access
Article
Publication date: 25 September 2019

Venkatesh Kodur, Puneet Kumar and Muhammad Masood Rafi

The current fire protection measures in buildings do not account for all contemporary fire hazard issues, which has made fire safety a growing concern. Therefore, this paper aims…

89059

Abstract

Purpose

The current fire protection measures in buildings do not account for all contemporary fire hazard issues, which has made fire safety a growing concern. Therefore, this paper aims to present a critical review of current fire protection measures and their applicability to address current challenges relating to fire hazards in buildings.

Design/methodology/approach

To overcome fire hazards in buildings, impact of fire hazards is also reviewed to set the context for fire protection measures. Based on the review, an integrated framework for mitigation of fire hazards is proposed. The proposed framework involves enhancement of fire safety in four key areas: fire protection features in buildings, regulation and enforcement, consumer awareness and technology and resources advancement. Detailed strategies on improving fire safety in buildings in these four key areas are presented, and future research and training needs are identified.

Findings

Current fire protection measures lead to an unquantified level of fire safety in buildings, provide minimal strategies to mitigate fire hazard and do not account for contemporary fire hazard issues. Implementing key measures that include reliable fire protection systems, proper regulation and enforcement of building code provisions, enhancement of public awareness and proper use of technology and resources is key to mitigating fire hazard in buildings. Major research and training required to improve fire safety in buildings include developing cost-effective fire suppression systems and rational fire design approaches, characterizing new materials and developing performance-based codes.

Practical implications

The proposed framework encompasses both prevention and management of fire hazard. To demonstrate the applicability of this framework in improving fire safety in buildings, major limitations of current fire protection measures are identified, and detailed strategies are provided to address these limitations using proposed fire safety framework.

Social implications

Fire represents a severe hazard in both developing and developed countries and poses significant threat to life, structure, property and environment. The proposed framework has social implications as it addresses some of the current challenges relating to fire hazard in buildings and will enhance overall fire safety.

Originality/value

The novelty of proposed framework lies in encompassing both prevention and management of fire hazard. This is unlike current fire safety improvement strategies, which focus only on improving fire protection features in buildings (i.e. managing impact of fire hazard) using performance-based codes. To demonstrate the applicability of this framework in improving fire safety in buildings, major limitations of current fire protection measures are identified and detailed strategies are provided to address these limitations using proposed fire safety framework. Special emphasis is given to cost-effectiveness of proposed strategies, and research and training needs for further enhancing building fire safety are identified.

Details

PSU Research Review, vol. 4 no. 1
Type: Research Article
ISSN: 2399-1747

Keywords

Open Access
Article
Publication date: 26 August 2021

Yuqing Ji, Dongxiu Ou, Lei Zhang, Chenkai Tang and Visarut Phichitthanaset

When a railway emergency occurs, it often leads to unexpected consequences, especially for trains of higher speed and larger passenger flow. Therefore, the railway emergency plan…

833

Abstract

Purpose

When a railway emergency occurs, it often leads to unexpected consequences, especially for trains of higher speed and larger passenger flow. Therefore, the railway emergency plan, a pre-established plan to deal with emergencies, plays an important role in reducing injuries and losses. However, the existing railway emergency plans remain as plain-text documents, requiring lots of manual work to capture the important regulations. This paper aims to propose a visualized, formal and digital railway emergency plan modeling method based on hierarchical timed Petri net (HTPN), which is also of better interpretability.

Design/methodology/approach

First, the general railway emergency plan was analyzed. Second, the HTPN-based framework model for the general railway emergency plan was proposed. Then, the instantiated model of electric multiple units rescue emergency plan was built by ExSpect, a Petri net simulation tool.

Findings

The experiments show that the proposed model is more digital and of better readability, visualization and performability, and, meanwhile, can generally conform to the practice well, offering a promising reference for future analysis of the optimization of railway emergency plans.

Originality/value

This study offers a promising reference for future analysis of the optimization of railway emergency plans.

Details

Smart and Resilient Transportation, vol. 3 no. 3
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 6 October 2021

Nobuhito Ohtsu, Akihiko Hokugo, Ana Maria Cruz, Yukari Sato, Yuko Araki and Hyejeong Park

This study investigated pre-evacuation times and evacuation behaviors of vulnerable people during the 2018 flooding in Shimobara, Okayama, Japan, and the flood-triggered factory…

1540

Abstract

Purpose

This study investigated pre-evacuation times and evacuation behaviors of vulnerable people during the 2018 flooding in Shimobara, Okayama, Japan, and the flood-triggered factory explosion, a natural hazard-triggered technological accident known as a natural-hazard-triggered technological accidents (Natech). This study examined factors that affected evacuation decisions and pre-evacuation time, estimated the evacuation time in case of no explosion and identified community disaster prevention organization response efforts for vulnerable people.

Design/methodology/approach

Interviews with all 18 vulnerable people who experienced the event were conducted. Multiple regression analysis was used to examine the effect of six factors on evacuation time and reasons for delayed evacuation.

Findings

Factors affecting evacuation decisions included the sound of the explosion, followed by recommendations from relatives and the community disaster prevention organization. Explosion-related injuries delayed early evacuation, but experience of previous disasters and damage had a positive effect on early evacuation. The explosion sound accelerated evacuation of non-injured people; however, explosion-related injuries significantly delayed evacuation of injured individuals. The Shimobara community disaster prevention organization’s disaster response included a vulnerable people registry, visits to all local households and a multilayered approach that enabled monitoring of all households.

Originality/value

This is the first study to examine the evacuation behavior of vulnerable people and community responses during a Natech event.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 14 no. 1
Type: Research Article
ISSN: 1759-5908

Keywords

Content available
Article
Publication date: 1 April 2002

Andrew Adamatzky

85
1 – 10 of 151