Search results

1 – 10 of 72
Article
Publication date: 22 February 2024

Thien Vuong Nguyen, Vy Do Truc, Tuan Anh Nguyen and Dai Lam Tran

This study aims to explore the synergistic effect of oxide nanoparticles (ZnO, Fe2O3, SiO2) and cerium nitrate inhibitor on anti-corrosion performance of epoxy coating. First…

36

Abstract

Purpose

This study aims to explore the synergistic effect of oxide nanoparticles (ZnO, Fe2O3, SiO2) and cerium nitrate inhibitor on anti-corrosion performance of epoxy coating. First, cerium nitrate inhibitors are absorbed on the surface of various oxide nanoparticles. Thereafter, epoxy nanocomposite coatings have been fabricated on carbon steel substrate using these oxide@Ce nanoparticles as both nano-fillers and nano-inhibitors.

Design/methodology/approach

To evaluate the impact of oxides@Ce nanoparticles on mechanical properties of epoxy coating, the abrasion resistance and impact resistance of epoxy coatings have been examined. To study the impact of oxides@Ce nanoparticles on anti-corrosion performance of epoxy coating for steel, the electrochemical impedance spectroscopy has been carried out in 3% NaCl solution.

Findings

ZnO@Ce3+ and SiO2@Ce3+ nanoparticles provide more enhancement in the epoxy pore network than modification of the epoxy/steel interface. Whereas, Fe2O3@Ce3+ nanoparticles have more to do with modification of the epoxy/steel interface than to change the epoxy pore network.

Originality/value

Incorporation of both oxide nanoparticles and inorganic inhibitor into the epoxy resin is a promising approach for enhancing the anti-corrosion performance of carbon steel.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 16 April 2024

P. Gunasekar, Anderson A. and Praveenkumar T.R.

Composite materials have revolutionized the aerospace industry by offering superior structural qualities over traditional elements. This study aims to focus on the development and…

Abstract

Purpose

Composite materials have revolutionized the aerospace industry by offering superior structural qualities over traditional elements. This study aims to focus on the development and testing of bamboo natural fiber-based composites enhanced with SiO2 nanoparticles.

Design/methodology/approach

The investigation involved fabricating specimens with varying nanoparticle compositions (0, 10 and 20%) and conducting tensile, flexural, impact and fracture toughness tests. Results indicated significant improvements in mechanical properties with the addition of nanoparticles, particularly at a 10% composition level.

Findings

This study underscores the potential of natural fiber composites, highlighting their environmental friendliness, cost-effectiveness and improved structural properties when reinforced with nanoparticles. The findings suggest an optimal ratio for nanoparticle integration, emphasizing the critical role of precise mixing proportions in achieving superior composite performance.

Originality/value

The tensile strength, flexural strength, impact resistance and fracture toughness exhibited notable enhancements compared with the 0 and 20% nanoparticle compositions. The 10% composition showed the most promising outcomes, showcasing increased strength across all parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 April 2024

Mandeep Singh, Deepak Bhandari and Khushdeep Goyal

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze…

Abstract

Purpose

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze casting technique.

Design/methodology/approach

The hybrid aluminium matrix nanocomposites (HAMNCs) were fabricated with varying concentrations of titanium oxide (TiO2) and yttrium oxide (Y2O3), from 2.5 to 10 Wt.% in 2.5 Wt.% increments. Dry sliding wear test variables were optimized using the Taguchi method.

Findings

The introduction of hybrid nanoparticles in the aluminium (Al) matrix was evenly distributed in contrast to the base matrix. HAMNC6 (5 Wt.% TiO2 + 5 Wt.% Y2O3) reported the maximum enhancement in mechanical properties (tensile strength, flexural strength, impact strength and density) and decrease in porosity% and elongation% among other HAMNCs. The results showed that the optimal combination of parameters to achieve the lowest wear rate was A3B3C1, or 15 N load, 1.5 m/s sliding velocity and 200 m sliding distance. The sliding distance showed the greatest effect on the dry sliding wear rate of HAMNC6 followed by applied load and sliding velocity. The fractured surfaces of the tensile sample showed traces of cracking as well as substantial craters with fine dimples and the wear worn surfaces were caused by abrasion, cracks and delamination of HAMNC6.

Originality/value

Squeeze-cast Al-reinforced hybrid (TiO2+Y2O3) nanoparticles have been investigated for their impact on mechanical properties and optimization of wear parameters.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 April 2024

Vahid Ahmadi, Seyed Mohammad Ali Hosseini, Effat Jamalizadeh and Razie Naghizade

This paper aims to investigate the corrosion resistance of two types of coatings – one is ceria sol coating and the other is ceria sol coating modified by ZnO nanoparticles on…

Abstract

Purpose

This paper aims to investigate the corrosion resistance of two types of coatings – one is ceria sol coating and the other is ceria sol coating modified by ZnO nanoparticles on 7075 aluminum alloy in 3.5% NaCl solution.

Design/methodology/approach

Aluminum alloys were dipped into ceria sol and ceria sol modified by ZnO nanoparticles separately and removed after 10 min from the solutions and dried at 110°C for 30 min and heated at 500 °C for 30 min to form the coatings. The coatings have been characterized by using field emission scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The EIS tests were performed in a corrosive solution of 3.5% NaCl.

Findings

The results showed that the coating of ceria sol modified by ZnO nanoparticles has higher corrosion resistance than the ceria sol coating and the bare sample. Also, the best efficiency is related to aluminum sample immersion after 1 h in NaCl corrosive solution for coating modified by ZnO nanoparticles.

Originality/value

In this research, the modification of ceria sol coating by ZnO nanoparticles had an effect on improving the corrosion behavior of aluminum alloy. It is also understood that modification of coatings is an effective parameter on corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 20 February 2024

Ebrahem A. Algehyne

In recent times, there has been a growing interest in buoyancy-induced heat transfer within confined enclosures due to its frequent occurrence in heat transfer processes across…

27

Abstract

Purpose

In recent times, there has been a growing interest in buoyancy-induced heat transfer within confined enclosures due to its frequent occurrence in heat transfer processes across diverse engineering disciplines, including electronic cooling, solar technologies, nuclear reactor systems, heat exchangers and energy storage systems. Moreover, the reduction of entropy generation holds significant importance in engineering applications, as it contributes to enhancing thermal system performance. This study, a numerical investigation, aims to analyze entropy generation and natural convection flow in an inclined square enclosure filled with Ag–MgO/water and Ag–TiO2/water hybrid nanofluids under the influence of a magnetic field. The enclosure features heated slits along its bottom and left walls. Following the Boussinesq approximation, the convective flow arises from a horizontal temperature difference between the partially heated walls and the cold right wall.

Design/methodology/approach

The governing equations for laminar unsteady natural convection flow in a Newtonian, incompressible mixture is solved using a Marker-and-Cell-based finite difference method within a customized MATLAB code. The hybrid nanofluid’s effective thermal conductivity and viscosity are determined using spherical nanoparticle correlations.

Findings

The numerical investigations cover various parameters, including nanoparticle volume concentration, Hartmann number, Rayleigh number, heat source/sink effects and inclination angle. As the Hartmann and Rayleigh numbers increase, there is a significant enhancement in entropy generation. The average Nusselt number experiences a substantial increase at extremely high values of the Rayleigh number and inclination.

Practical implications

This numerical investigation explores advanced applications involving various combinations of influential parameters, different nanoparticles, enclosure inclinations and improved designs. The goal is to control fluid flow and enhance heat transfer rates to meet the demands of the Fourth Industrial Revolution.

Originality/value

In a 90° tilted enclosure, the addition of 5% hybrid nanoparticles to the base fluid resulted in a 17.139% increase in the heat transfer rate for Ag–MgO nanoparticles and a 16.4185% increase for Ag–TiO2 nanoparticles compared to the base fluid. It is observed that a 5% nanoparticle volume fraction results in an increased heat transfer rate, influenced by variations in both the Darcy and Rayleigh numbers. The study demonstrates that the Ag–MgO hybrid nanofluid exhibits superior heat transfer and fluid transport performance compared to the Ag–TiO2 hybrid nanofluid. The simulations pertain to the use of hybrid magnetic nanofluids in fuel cells, solar cavity receivers and the processing of electromagnetic nanomaterials in enclosed environments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 January 2024

Bengisen Pekmen Geridonmez and Hakan Oztop

The purpose of this study is to investigate the interaction between magnetotactic bacteria and Fe3O4–water nanofluid (NF) in a wavy enclosure in the presence of 2D natural…

Abstract

Purpose

The purpose of this study is to investigate the interaction between magnetotactic bacteria and Fe3O4–water nanofluid (NF) in a wavy enclosure in the presence of 2D natural convection flow.

Design/methodology/approach

Uniform magnetic field (MF), Brownian and thermophoresis effects are also contemplated. The dimensionless, time-dependent equations are governed by stream function, vorticity, energy, nanoparticle concentration and number of bacteria. Radial basis function-based finite difference method for the space derivatives and the second-order backward differentiation formula for the time derivatives are performed. Numerical outputs in view of isolines as well as average Nusselt number, average Sherwood number and flux density of microorganisms are presented.

Findings

Convective mass transfer rises if any of Lewis number, Peclet number, Rayleigh number, bioconvection Rayleigh number and Brownian motion parameter increases, and the flux density of microorganisms is an increasing function of Rayleigh number, bioconvection Rayleigh number, Peclet number, Brownian and thermophoresis parameters. The rise in buoyancy ratio parameter between 0.1 and 1 and the rise in Hartmann number between 0 and 50 reduce all outputs average Nusselt, average Sherwood numbers and flux density of microorganisms.

Research limitations/implications

This study implies the importance of the presence of magnetotactic bacteria and magnetite nanoparticles inside a host fluid in view of heat transfer and fluid flow. The limitation is to check the efficiency on numerical aspect. Experimental observations would be more effective.

Practical implications

In practical point of view, in a heat transfer and fluid flow system involving magnetite nanoparticles, the inclusion of magnetotactic bacteria and MF effect provide control over fluid flow and heat transfer.

Social implications

This is a scientific study. However, this idea may be extended to sustainable energy or biofuel studies, too. This means that a better world may create better social environment between people.

Originality/value

The presence of magnetotactic bacteria inside a Fe3O4–water NF under the effect of a MF is a good controller on fluid flow and heat transfer. Since the magnetotactic bacteria is fed by nanoparticles Fe3O4 which has strong magnetic property, varying nanoparticle concentration and Brownian and thermophoresis effects are first considered.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 April 2024

Ziyan Lu, Feng Qiu, Hui Song and Xianguo Hu

This paper aims to solve the problems molybdenum disulfide (MoS2) nanosheets suffer from inadequate dispersion stability and form a weak lubricating film on the friction surface…

Abstract

Purpose

This paper aims to solve the problems molybdenum disulfide (MoS2) nanosheets suffer from inadequate dispersion stability and form a weak lubricating film on the friction surface, which severely limits their application as lubricant additives.

Design/methodology/approach

MoS2/C60 nanocomposites were prepared by synthesizing molybdenum disulfide (MoS2) nanosheets on the surface of hydrochloric acid-activated fullerenes (C60) by in situ hydrothermal method. The composition, structure and morphology of MoS2/C60 nanocomposites were characterized. Through the high-frequency reciprocating tribology test, its potential as a lubricant additive was evaluated.

Findings

MoS2/C60 nanocomposites that were prepared showed good dispersion in dioctyl sebacate (DOS). When 0.5 Wt.% MoS2/C60 was added, the friction reduction performance and wear resistance improved by 54.5% and 62.7%, respectively.

Originality/value

MoS2/C60 composite nanoparticles were prepared by in-situ formation of MoS2 nanosheets on the surface of C60 activated by HCl through hydrothermal method and were used as potential lubricating oil additives.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2023-0321/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 7 February 2023

Selinay Gumus, Kaan Aksoy and Ayse Aytac

This study aims to investigate the effects of nano or inorganic fillers on unsaturated polyester’s (UPE) thermal, mechanical, and physical properties. UPE reinforced with…

Abstract

Purpose

This study aims to investigate the effects of nano or inorganic fillers on unsaturated polyester’s (UPE) thermal, mechanical, and physical properties. UPE reinforced with nanoparticles shows better properties than the pure polymer itself. Nano or inorganic fillers are used in the polymeric matrix to improve thermal, mechanical and physical properties.

Design/methodology/approach

To improve thermal, mechanical and physical properties, UPE resin was modified with silica (S), boron nitride (BN) and S/BN hybrid nanoparticles at different ratios. Viscosity and solids content measurement, Fourier transform infrared spectroscopy, contact angle measurement, scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and thermal conductivity coefficient tests were performed on the samples.

Findings

In the SEM analysis, the UPE sample showed a smooth appearance, while all samples containing additives showed phase separation and overall heterogeneous distribution. TGA results demonstrated that the thermal stability of the resin increased in the presence of S and BN additives. According to the results, it was observed that the presence of S and BN additives in the UPE resin and the use of certain ratios improved the resin properties.

Originality/value

As a result of the literature search, to the best of the authors’ knowledge, no study was found in which BN nanoparticles were included in the UPE resin together with S.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 March 2024

U.S. Mahabaleshwar, Mahesh Rudraiah, Huang Huang and Bengt Ake Sunden

The purpose of this study is to analyze the impact of inclined magnetohydrodynamics (MHD) and thermal radiation on the flow of a ternary micropolar nanofluid on a sheet that is…

Abstract

Purpose

The purpose of this study is to analyze the impact of inclined magnetohydrodynamics (MHD) and thermal radiation on the flow of a ternary micropolar nanofluid on a sheet that is expanding and contracting while applying mass transpiration and velocity slip conditions to the flow. The nanofluid, which is composed of Au, Ag and Cu nanoparticles dispersed in water as the base fluid, possesses critical properties for increasing the heat transfer rate and is frequently used in manufacturing and industrial establishments.

Design/methodology/approach

The set of governing nonlinear partial differential equations is transformed into a set of nonlinear ordinary differential equations. The outcome of this differential equation is solved and obtained the closed-form solution and energy equation in the form of hypergeometric functions.

Findings

The velocity, micro-rotation and temperature field are investigated versus a parametric variation. The physical domains of mass suction or injection and micropolar characteristics play an important role in specifying the presence, singleness and multiplanes of exact solutions. In addition, many nondimensional characteristics of the profiles of temperature, angular velocity and velocity profiles are graphically shown with substantial consequences. Furthermore, adding nanoparticles increases the heat transfer rate of the fluid used in manufacturing and industrial establishments. The current findings may be used for better oil recovery procedures, smart materials such as magnetorheological fluids, targeted medicine administration and increased heat transmission. Concerning environmental cleanup, nanomaterial fabrication and biomedical devices, demonstrate their potential influence in a variety of disciplines.

Originality/value

The originality of this paper is to analyze the impact of inclined MHD at an angle with the ternary nanofluid on a micropolar fluid over an expanding and contracting sheet with thermal radiation effect.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 21 April 2023

Rana I. Mahmood, Harraa S. Mohammed-Salih, Ata’a Ghazi, Hikmat J. Abdulbaqi and Jameel R. Al-Obaidi

In the developing field of nano-materials synthesis, copper oxide nanoparticles (NPs) are deemed to be one of the most significant transition metal oxides because of their…

Abstract

Purpose

In the developing field of nano-materials synthesis, copper oxide nanoparticles (NPs) are deemed to be one of the most significant transition metal oxides because of their intriguing characteristics. Its synthesis employing green chemistry principles has become a key source for next-generation antibiotics attributed to its features such as environmental friendliness, ease of use and affordability. Because they are more environmentally benign, plants have been employed to create metallic NPs. These plant extracts serve as capping, stabilising or hydrolytic agents and enable a regulated synthesis as well.

Design/methodology/approach

Organic chemical solvents are harmful and entail intense conditions during nanoparticle synthesis. The copper oxide NPs (CuO-NPs) synthesised by employing the green chemistry principle showed potential antitumor properties. Green synthesised CuO-NPs are regarded to be a strong contender for applications in the pharmacological, biomedical and environmental fields.

Findings

The aim of this study is to evaluate the anticancer potential of CuO-NPs plant extracts to isolate and characterise the active anticancer principles as well as to yield more effective, affordable, and safer cancer therapies.

Originality/value

This review article highlights the copper oxide nanoparticle's biomedical applications such as anticancer, antimicrobial, dental and drug delivery properties, future research perspectives and direction are also discussed.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

1 – 10 of 72