Search results

1 – 10 of over 6000
Article
Publication date: 10 September 2024

Chunliang Niu, BingZhuo Liu, Chunfei Bai, Liming Guo, Lei Chen and Jiwu Tang

In order to improve the efficiency and reliability of simulation analysis for composite riveting structures in engineering products, a comparative study was conducted on different…

Abstract

Purpose

In order to improve the efficiency and reliability of simulation analysis for composite riveting structures in engineering products, a comparative study was conducted on different forms of riveting simulation methods.

Design/methodology/approach

Five different rivent simulation models were established using the finite element method, including rigid element CE, flexible element Rbe3 and beam element, and their results were future compared and analyzed.

Findings

Under the given technical parameters, the simulation method of Rbe3 (with holes) + beam can meet the analysis requirements of complex engineering products in terms of the rationality of rivet load distribution, calculation error and relatively efficient modeling.

Originality/value

This study proposes a simulation method for the riveting structure of carbon fiber composite materials for engineering applications. This method can satisfy the simulation analysis requirements of transportation vehicles in terms of modeling time, computational efficiency and accuracy. The research can provide technical support for the riveting process and mechanical analysis between carbon fiber composite components in transportation products.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Content available
Article
Publication date: 23 October 2023

Adam Biggs and Joseph Hamilton

Evaluating warfighter lethality is a critical aspect of military performance. Raw metrics such as marksmanship speed and accuracy can provide some insight, yet interpreting subtle…

Abstract

Purpose

Evaluating warfighter lethality is a critical aspect of military performance. Raw metrics such as marksmanship speed and accuracy can provide some insight, yet interpreting subtle differences can be challenging. For example, is a speed difference of 300 milliseconds more important than a 10% accuracy difference on the same drill? Marksmanship evaluations must have objective methods to differentiate between critical factors while maintaining a holistic view of human performance.

Design/methodology/approach

Monte Carlo simulations are one method to circumvent speed/accuracy trade-offs within marksmanship evaluations. They can accommodate both speed and accuracy implications simultaneously without needing to hold one constant for the sake of the other. Moreover, Monte Carlo simulations can incorporate variability as a key element of performance. This approach thus allows analysts to determine consistency of performance expectations when projecting future outcomes.

Findings

The review divides outcomes into both theoretical overview and practical implication sections. Each aspect of the Monte Carlo simulation can be addressed separately, reviewed and then incorporated as a potential component of small arms combat modeling. This application allows for new human performance practitioners to more quickly adopt the method for different applications.

Originality/value

Performance implications are often presented as inferential statistics. By using the Monte Carlo simulations, practitioners can present outcomes in terms of lethality. This method should help convey the impact of any marksmanship evaluation to senior leadership better than current inferential statistics, such as effect size measures.

Details

Journal of Defense Analytics and Logistics, vol. 7 no. 2
Type: Research Article
ISSN: 2399-6439

Keywords

Article
Publication date: 7 July 2023

Yasmina Maïzi and Ygal Bendavid

Assess the realistic impacts of implementing an Radio Frequency Identification (RFID)/Internet of Things (IoT) uniforms’ distribution system for managing medical personnel’s…

495

Abstract

Purpose

Assess the realistic impacts of implementing an Radio Frequency Identification (RFID)/Internet of Things (IoT) uniforms’ distribution system for managing medical personnel’s scrubs in operating rooms. The authors use a hybrid simulation framework to address the following objectives and challenges: a) reduce and control operating rooms’ level of inventory; b) stabilize scrubs’ demand and c) improve infection control and prevention of cross-contamination (through scrubs over manipulation and hoarding).

Design/methodology/approach

The authors adopt a Design Science approach. This methodological approach is used to design, develop, create and evaluate information technology “artifacts” (e.g. constructs, models, methods and instantiations) intended to solve organizational problems and make research contributions (Peffers et al., 2007). More specifically, the authors follow the Design Science Research Methodology process model which includes six steps: problem identification and motivation, definition of the objectives for a solution, design and development, demonstration, evaluation, and communication.

Findings

To assess the realistic impacts of implementing an RFID-IoT uniforms’ distribution system for managing medical personnel’s scrubs in operating rooms, the authors adopted a design science approach and initiated the research by documenting the business case and reviewed the existing literature to build a comparative analysis of existing uniforms’ distribution systems. The authors used a hybrid simulation model to assess the impact of three business cases: present mode of operation, implementing smart shelves or the smart distributors. The authors show that smart dispensers allow a greater control on scrubs’ utilization while eliminating the cross-contamination of the medical personnel.

Practical implications

Through this research study, the authors provide hospitals’ managers a scientific support for uniforms’ (scrubs) distribution process improvement. The authors use a hybrid simulation model to compare innovative solutions for uniforms’ distribution systems in the form of “smart cabinets” supported by Radio Frequency Identification (RFID)/Internet of Things (IoT) technologies and choose the most appropriate design for the hospital to meet two main challenges: a) inefficiency of uniform replenishment-distribution system and b) noncompliancy with infection control regulations caused by the distribution system.

Originality/value

From a methodological perspective, this paper addresses concerns from researchers calling quantitative research methods and using case-based research strategy to address IoT issues and assess the system in practice. From a broader point of view, this work confirms the predominant interest of RFID-IoT research work in the arena of supply chain management and logistics as the technology is used for tracking purpose and for monitoring applications. It is also one response to the research community suggesting that “hospitals should evaluate the medical effectiveness of the new technologies as well as the cost before adoption”.

Details

Business Process Management Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1463-7154

Keywords

Book part
Publication date: 7 February 2024

Clair Reynolds Kueny, Alex Price and Casey Canfield

Barriers to adequate healthcare in rural areas remain a grand challenge for local healthcare systems. In addition to patients' travel burdens, lack of health insurance, and lower…

Abstract

Barriers to adequate healthcare in rural areas remain a grand challenge for local healthcare systems. In addition to patients' travel burdens, lack of health insurance, and lower health literacy, rural healthcare systems also experience significant resource shortages, as well as issues with recruitment and retention of healthcare providers, particularly specialists. These factors combined result in complex change management-focused challenges for rural healthcare systems. Change management initiatives are often resource intensive, and in rural health organizations already strapped for resources, it may be particularly risky to embark on change initiatives. One way to address these change management concerns is by leveraging socio-technical simulation models to estimate techno-economic feasibility (e.g., is it technologically feasible, and is it economical?) as well as socio-utility feasibility (e.g., how will the changes be utilized?). We present a framework for how healthcare systems can integrate modeling and simulation techniques from systems engineering into a change management process. Modeling and simulation are particularly useful for investigating the amount of uncertainty about potential outcomes, guiding decision-making that considers different scenarios, and validating theories to determine if they accurately reflect real-life processes. The results of these simulations can be integrated into critical change management recommendations related to developing readiness for change and addressing resistance to change. As part of our integration, we present a case study showcasing how simulation modeling has been used to determine feasibility and potential resistance to change considerations for implementing a mobile radiation oncology unit. Recommendations and implications are discussed.

Details

Research and Theory to Foster Change in the Face of Grand Health Care Challenges
Type: Book
ISBN: 978-1-83797-655-3

Keywords

Open Access
Article
Publication date: 26 May 2023

Mpho Trinity Manenzhe, Arnesh Telukdarie and Megashnee Munsamy

The purpose of this paper is to propose a system dynamic simulated process model for maintenance work management incorporating the Fourth Industrial Revolution (4IR) technologies.

2724

Abstract

Purpose

The purpose of this paper is to propose a system dynamic simulated process model for maintenance work management incorporating the Fourth Industrial Revolution (4IR) technologies.

Design/methodology/approach

The extant literature in physical assets maintenance depicts that poor maintenance management is predominantly because of a lack of a clearly defined maintenance work management process model, resulting in poor management of maintenance work. This paper solves this complex phenomenon using a combination of conceptual process modeling and system dynamics simulation incorporating 4IR technologies. A process for maintenance work management and its control actions on scheduled maintenance tasks versus unscheduled maintenance tasks is modeled, replicating real-world scenarios with a digital lens (4IR technologies) for predictive maintenance strategy.

Findings

A process for maintenance work management is thus modeled and simulated as a dynamic system. Post-model validation, this study reveals that the real-world maintenance work management process can be replicated using system dynamics modeling. The impact analysis of 4IR technologies on maintenance work management systems reveals that the implementation of 4IR technologies intensifies asset performance with an overall gain of 27.46%, yielding the best maintenance index. This study further reveals that the benefits of 4IR technologies positively impact equipment defect predictability before failure, thereby yielding a predictive maintenance strategy.

Research limitations/implications

The study focused on maintenance work management system without the consideration of other subsystems such as cost of maintenance, production dynamics, and supply chain management.

Practical implications

The maintenance real-world quantitative data is retrieved from two maintenance departments from company A, for a period of 24 months, representing years 2017 and 2018. The maintenance quantitative data retrieved represent six various types of equipment used at underground Mines. The maintenance management qualitative data (Organizational documents) in maintenance management are retrieved from company A and company B. Company A is a global mining industry, and company B is a global manufacturing industry. The reliability of the data used in the model validation have practical implications on how maintenance work management system behaves with the benefit of 4IR technologies' implementation.

Social implications

This research study yields an overall benefit in asset management, thereby intensifying asset performance. The expected learnings are intended to benefit future research in the physical asset management field of study and most important to the industry practitioners in physical asset management.

Originality/value

This paper provides for a model in which maintenance work and its dynamics is systematically managed. Uncontrollable corrective maintenance work increases the complexity of the overall maintenance work management. The use of a system dynamic model and simulation incorporating 4IR technologies adds value on the maintenance work management effectiveness.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 5
Type: Research Article
ISSN: 1355-2511

Keywords

Open Access
Article
Publication date: 29 May 2024

Mohanad Rezeq, Tarik Aouam and Frederik Gailly

Authorities have set up numerous security checkpoints during times of armed conflict to control the flow of commercial and humanitarian trucks into and out of areas of conflict…

Abstract

Purpose

Authorities have set up numerous security checkpoints during times of armed conflict to control the flow of commercial and humanitarian trucks into and out of areas of conflict. These security checkpoints have become highly utilized because of the complex security procedures and increased truck traffic, which significantly slow the delivery of relief aid. This paper aims to improve the process at security checkpoints by redesigning the current process to reduce processing time and relieve congestion at checkpoint entrance gates.

Design/methodology/approach

A decision-support tool (clearing function distribution model [CFDM]) is used to minimize the effects of security checkpoint congestion on the entire humanitarian supply network using a hybrid simulation-optimization approach. By using a business process simulation, the current and reengineered processes are both simulated, and the simulation output was used to estimate the clearing function (capacity as a function of the workload). For both the AS-IS and TO-BE models, key performance indicators such as distribution costs, backordering and process cycle time were used to compare the results of the CFDM tool. For this, the Kerem Abu Salem security checkpoint south of Gaza was used as a case study.

Findings

The comparison results demonstrate that the CFDM tool performs better when the output of the TO-BE clearing function is used.

Originality/value

The efforts will contribute to improving the planning of any humanitarian network experiencing congestion at security checkpoints by minimizing the impact of congestion on the delivery lead time of relief aid to the final destination.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. 14 no. 4
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 5 June 2024

Gokce Tomrukcu, Hazal Kizildag, Gizem Avgan, Ozlem Dal, Nese Ganic Saglam, Ece Ozdemir and Touraj Ashrafian

This study aims to create an efficient approach to validate building energy simulation models amidst challenges from time-intensive data collection. Emphasizing precision in model…

Abstract

Purpose

This study aims to create an efficient approach to validate building energy simulation models amidst challenges from time-intensive data collection. Emphasizing precision in model calibration through strategic short-term data acquisition, the systematic framework targets critical adjustments using a strategically captured dataset. Leveraging metrics like Mean Bias Error (MBE) and Coefficient of Variation of Root Mean Square Error (CV(RMSE)), this methodology aims to heighten energy efficiency assessment accuracy without lengthy data collection periods.

Design/methodology/approach

A standalone school and a campus facility were selected as case studies. Field investigations enabled precise energy modeling, emphasizing user-dependent parameters and compliance with standards. Simulation outputs were compared to short-term actual measurements, utilizing MBE and CV(RMSE) metrics, focusing on internal temperature and CO2 levels. Energy bills and consumption data were scrutinized to verify natural gas and electricity usage against uncertain parameters.

Findings

Discrepancies between initial simulations and measurements were observed. Following adjustments, the standalone school 1’s average internal temperature increased from 19.5 °C to 21.3 °C, with MBE and CV(RMSE) aiding validation. Campus facilities exhibited complex variations, addressed by accounting for CO2 levels and occupancy patterns, with similar metrics aiding validation. Revisions in lighting and electrical equipment schedules improved electricity consumption predictions. Verification of natural gas usage and monthly error rate calculations refined the simulation model.

Originality/value

This paper tackles Building Energy Simulation validation challenges due to data scarcity and time constraints. It proposes a strategic, short-term data collection method. It uses MBE and CV(RMSE) metrics for a comprehensive evaluation to ensure reliable energy efficiency predictions without extensive data collection.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 26 June 2024

Jinyao Nan, Pingfa Feng, Jie Xu and Feng Feng

The purpose of this study is to advance the computational modeling of liquid splashing dynamics, while balancing simulation accuracy and computational efficiency, a duality often…

Abstract

Purpose

The purpose of this study is to advance the computational modeling of liquid splashing dynamics, while balancing simulation accuracy and computational efficiency, a duality often compromised in high-fidelity fluid dynamics simulations.

Design/methodology/approach

This study introduces the fluid efficient graph neural network simulator (FEGNS), an innovative framework that integrates an adaptive filtering layer and aggregator fusion strategy within a graph neural network architecture. FEGNS is designed to directly learn from extensive liquid splash data sets, capturing the intricate dynamics and intrinsically complex interactions.

Findings

FEGNS achieves a remarkable 30.3% improvement in simulation accuracy over traditional methods, coupled with a 51.6% enhancement in computational speed. It exhibits robust generalization capabilities across diverse materials, enabling realistic simulations of droplet effects. Comparative analyses and empirical validations demonstrate FEGNS’s superior performance against existing benchmark models.

Originality/value

The originality of FEGNS lies in its adaptive filtering layer, which independently adjusts filtering weights per node, and a novel aggregator fusion strategy that enriches the network’s expressive power by combining multiple aggregation functions. To facilitate further research and practical deployment, the FEGNS model has been made accessible on GitHub (https://github.com/nanjinyao/FEGNS/tree/main).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 May 2023

Michail Katsigiannis, Minas Pantelidakis and Konstantinos Mykoniatis

With hybrid simulation techniques getting popular for systems improvement in multiple fields, this study aims to provide insight on the use of hybrid simulation to assess the…

Abstract

Purpose

With hybrid simulation techniques getting popular for systems improvement in multiple fields, this study aims to provide insight on the use of hybrid simulation to assess the effect of lean manufacturing (LM) techniques on manufacturing facilities and the transition of a mass production (MP) facility to incorporating LM techniques.

Design/methodology/approach

In this paper, the authors apply a hybrid simulation approach to improve an educational automotive assembly line and provide guidelines for implementing different LM techniques. Specifically, the authors describe the design, development, verification and validation of a hybrid discrete-event and agent-based simulation model of a LEGO® car assembly line to analyze, improve and assess the system’s performance. The simulation approach examines the base model (MP) and an alternative scenario (just-in-time [JIT] with Heijunka).

Findings

The hybrid simulation approach effectively models the facility. The alternative simulation scenario (implementing JIT and Heijunka LM techniques) improved all examined performance metrics. In more detail, the system’s lead time was reduced by 47.37%, the throughput increased by 5.99% and the work-in-progress for workstations decreased by up to 56.73%.

Originality/value

This novel hybrid simulation approach provides insight and can be potentially extrapolated to model other manufacturing facilities and evaluate transition scenarios from MP to LM.

Details

International Journal of Lean Six Sigma, vol. 15 no. 2
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 7 February 2024

Rajesh Shah, Blerim Gashi, Vikram Mittal, Andreas Rosenkranz and Shuoran Du

Tribological research is complex and multidisciplinary, with many parameters to consider. As traditional experimentation is time-consuming and expensive due to the complexity of…

Abstract

Purpose

Tribological research is complex and multidisciplinary, with many parameters to consider. As traditional experimentation is time-consuming and expensive due to the complexity of tribological systems, researchers tend to use quantitative and qualitative analysis to monitor critical parameters and material characterization to explain observed dependencies. In this regard, numerical modeling and simulation offers a cost-effective alternative to physical experimentation but must be validated with limited testing. This paper aims to highlight advances in numerical modeling as they relate to the field of tribology.

Design/methodology/approach

This study performed an in-depth literature review for the field of modeling and simulation as it relates to tribology. The authors initially looked at the application of foundational studies (e.g. Stribeck) to understand the gaps in the current knowledge set. The authors then evaluated a number of modern developments related to contact mechanics, surface roughness, tribofilm formation and fluid-film layers. In particular, it looked at key fields driving tribology models including nanoparticle research and prosthetics. The study then sought out to understand the future trends in this research field.

Findings

The field of tribology, numerical modeling has shown to be a powerful tool, which is both time- and cost-effective when compared to standard bench testing. The characterization of tribological systems of interest fundamentally stems from the lubrication regimes designated in the Stribeck curve. The prediction of tribofilm formation, film thickness variation, fluid properties, asperity contact and surface deformation as well as the continuously changing interactions between such parameters is an essential challenge for proper modeling.

Originality/value

This paper highlights the major numerical modeling achievements in various disciplines and discusses their efficacy, assumptions and limitations in tribology research.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2023-0076/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 6000