Search results

1 – 10 of over 3000
Article
Publication date: 7 February 2023

Riju Bhattacharya, Naresh Kumar Nagwani and Sarsij Tripathi

A community demonstrates the unique qualities and relationships between its members that distinguish it from other communities within a network. Network analysis relies heavily on…

Abstract

Purpose

A community demonstrates the unique qualities and relationships between its members that distinguish it from other communities within a network. Network analysis relies heavily on community detection. Despite the traditional spectral clustering and statistical inference methods, deep learning techniques for community detection have grown in popularity due to their ease of processing high-dimensional network data. Graph convolutional neural networks (GCNNs) have received much attention recently and have developed into a potential and ubiquitous method for directly detecting communities on graphs. Inspired by the promising results of graph convolutional networks (GCNs) in analyzing graph structure data, a novel community graph convolutional network (CommunityGCN) as a semi-supervised node classification model has been proposed and compared with recent baseline methods graph attention network (GAT), GCN-based technique for unsupervised community detection and Markov random fields combined with graph convolutional network (MRFasGCN).

Design/methodology/approach

This work presents the method for identifying communities that combines the notion of node classification via message passing with the architecture of a semi-supervised graph neural network. Six benchmark datasets, namely, Cora, CiteSeer, ACM, Karate, IMDB and Facebook, have been used in the experimentation.

Findings

In the first set of experiments, the scaled normalized average matrix of all neighbor's features including the node itself was obtained, followed by obtaining the weighted average matrix of low-dimensional nodes. In the second set of experiments, the average weighted matrix was forwarded to the GCN with two layers and the activation function for predicting the node class was applied. The results demonstrate that node classification with GCN can improve the performance of identifying communities on graph datasets.

Originality/value

The experiment reveals that the CommunityGCN approach has given better results with accuracy, normalized mutual information, F1 and modularity scores of 91.26, 79.9, 92.58 and 70.5 per cent, respectively, for detecting communities in the graph network, which is much greater than the range of 55.7–87.07 per cent reported in previous literature. Thus, it has been concluded that the GCN with node classification models has improved the accuracy.

Details

Data Technologies and Applications, vol. 57 no. 4
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 4 October 2021

Guang-Yih Sheu and Chang-Yu Li

In a classroom, a support vector machines model with a linear kernel, a neural network and the k-nearest neighbors algorithm failed to detect simulated money laundering accounts…

Abstract

Purpose

In a classroom, a support vector machines model with a linear kernel, a neural network and the k-nearest neighbors algorithm failed to detect simulated money laundering accounts generated from the Panama papers data set of the offshore leak database. This study aims to resolve this failure.

Design/methodology/approach

Build a graph attention network having three modules as a new money laundering detection tool. A feature extraction module encodes these input data to create a weighted graph structure. In it, directed edges and their end vertices denote financial transactions. Each directed edge has weights for storing the frequency of money transactions and other significant features. Social network metrics are features of nodes for characterizing an account’s roles in a money laundering typology. A graph attention module implements a self-attention mechanism for highlighting target nodes. A classification module further filters out such targets using the biased rectified linear unit function.

Findings

Resulted from the highlighting of nodes using a self-attention mechanism, the proposed graph attention network outperforms a Naïve Bayes classifier, the random forest method and a support vector machines model with a radial kernel in detecting money laundering accounts. The Naïve Bayes classifier produces second accurate classifications.

Originality/value

This paper develops a new money laundering detection tool, which outperforms existing methods. This new tool produces more accurate detections of money laundering, perfects warns of money laundering accounts or links and provides sharp efficiency in processing financial transaction records without being afraid of their amount.

Details

Journal of Money Laundering Control, vol. 25 no. 3
Type: Research Article
ISSN: 1368-5201

Keywords

Article
Publication date: 8 September 2023

Xiancheng Ou, Yuting Chen, Siwei Zhou and Jiandong Shi

With the continuous growth of online education, the quality issue of online educational videos has become increasingly prominent, causing students in online learning to face the…

Abstract

Purpose

With the continuous growth of online education, the quality issue of online educational videos has become increasingly prominent, causing students in online learning to face the dilemma of knowledge confusion. The existing mechanisms for controlling the quality of online educational videos suffer from subjectivity and low timeliness. Monitoring the quality of online educational videos involves analyzing metadata features and log data, which is an important aspect. With the development of artificial intelligence technology, deep learning techniques with strong predictive capabilities can provide new methods for predicting the quality of online educational videos, effectively overcoming the shortcomings of existing methods. The purpose of this study is to find a deep neural network that can model the dynamic and static features of the video itself, as well as the relationships between videos, to achieve dynamic monitoring of the quality of online educational videos.

Design/methodology/approach

The quality of a video cannot be directly measured. According to previous research, the authors use engagement to represent the level of video quality. Engagement is the normalized participation time, which represents the degree to which learners tend to participate in the video. Based on existing public data sets, this study designs an online educational video engagement prediction model based on dynamic graph neural networks (DGNNs). The model is trained based on the video’s static features and dynamic features generated after its release by constructing dynamic graph data. The model includes a spatiotemporal feature extraction layer composed of DGNNs, which can effectively extract the time and space features contained in the video's dynamic graph data. The trained model is used to predict the engagement level of learners with the video on day T after its release, thereby achieving dynamic monitoring of video quality.

Findings

Models with spatiotemporal feature extraction layers consisting of four types of DGNNs can accurately predict the engagement level of online educational videos. Of these, the model using the temporal graph convolutional neural network has the smallest prediction error. In dynamic graph construction, using cosine similarity and Euclidean distance functions with reasonable threshold settings can construct a structurally appropriate dynamic graph. In the training of this model, the amount of historical time series data used will affect the model’s predictive performance. The more historical time series data used, the smaller the prediction error of the trained model.

Research limitations/implications

A limitation of this study is that not all video data in the data set was used to construct the dynamic graph due to memory constraints. In addition, the DGNNs used in the spatiotemporal feature extraction layer are relatively conventional.

Originality/value

In this study, the authors propose an online educational video engagement prediction model based on DGNNs, which can achieve the dynamic monitoring of video quality. The model can be applied as part of a video quality monitoring mechanism for various online educational resource platforms.

Details

International Journal of Web Information Systems, vol. 19 no. 5/6
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 22 July 2021

Zirui Guo, Huimin Lu, Qinghua Yu, Ruibin Guo, Junhao Xiao and Hongshan Yu

This paper aims to design a novel feature descriptor to improve the performance of feature matching in challenge scenes, such as low texture and wide-baseline scenes. Common…

Abstract

Purpose

This paper aims to design a novel feature descriptor to improve the performance of feature matching in challenge scenes, such as low texture and wide-baseline scenes. Common descriptors are not suitable for low texture scenes and other challenging scenes mainly owing to encoding only one kind of features. The proposed feature descriptor considers multiple features and their locations, which is more expressive.

Design/methodology/approach

A graph neural network–based descriptors enhancement algorithm for feature matching is proposed. In this paper, point and line features are the primary concerns. In the graph, commonly used descriptors for points and lines constitute the nodes and the edges are determined by the geometric relationship between points and lines. After the graph convolution designed for incomplete join graph, enhanced descriptors are obtained.

Findings

Experiments are carried out in indoor, outdoor and low texture scenes. The experiments investigate the real-time performance, rotation invariance, scale invariance, viewpoint invariance and noise sensitivity of the descriptors in three types of scenes. The results show that the enhanced descriptors are robust to scene changes and can be used in wide-baseline matching.

Originality/value

A graph structure is designed to represent multiple features in an image. In the process of building graph structure, the geometric relation between multiple features is used to establish the edges. Furthermore, a novel hybrid descriptor for points and lines is obtained using graph convolutional neural network. This enhanced descriptor has the advantages of both point features and line features in feature matching.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 November 2022

Anuraj Mohan, Karthika P.V., Parvathi Sankar, K. Maya Manohar and Amala Peter

Money laundering is the process of concealing unlawfully obtained funds by presenting them as coming from a legitimate source. Criminals use crypto money laundering to hide the…

Abstract

Purpose

Money laundering is the process of concealing unlawfully obtained funds by presenting them as coming from a legitimate source. Criminals use crypto money laundering to hide the illicit origin of funds using a variety of methods. The most simplified form of bitcoin money laundering leans hard on the fact that transactions made in cryptocurrencies are pseudonymous, but open data gives more power to investigators and enables the crowdsourcing of forensic analysis. With the motive to curb these illegal activities, there exist various rules, policies and technologies collectively known as anti-money laundering (AML) tools. When properly implemented, AML restrictions reduce the negative effects of illegal economic activity while also promoting financial market integrity and stability, but these bear high costs for institutions. The purpose of this work is to motivate the opportunity to reconcile the cause of safety with that of financial inclusion, bearing in mind the limitations of the available data. The authors use the Elliptic dataset; to the best of the authors' knowledge, this is the largest labelled transaction dataset publicly available in any cryptocurrency.

Design/methodology/approach

AML in bitcoin can be modelled as a node classification task in dynamic networks. In this work, graph convolutional decision forest will be introduced, which combines the potentialities of evolving graph convolutional network and deep neural decision forest (DNDF). This model will be used to classify the unknown transactions in the Elliptic dataset. Additionally, the application of knowledge distillation (KD) over the proposed approach gives finest results compared to all the other experimented techniques.

Findings

The importance of utilising a concatenation between dynamic graph learning and ensemble feature learning is demonstrated in this work. The results show the superiority of the proposed model to classify the illicit transactions in the Elliptic dataset. Experiments also show that the results can be further improved when the system is fine-tuned using a KD framework.

Originality/value

Existing works used either ensemble learning or dynamic graph learning to tackle the problem of AML in bitcoin. The proposed model provides a novel view to combine the power of random forest with dynamic graph learning methods. Furthermore, the work also demonstrates the advantage of KD in improving the performance of the whole system.

Details

Data Technologies and Applications, vol. 57 no. 3
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 11 January 2022

Daniel Ashagrie Tegegne, Daniel Kitaw Azene and Eshetie Berhan Atanaw

This study aims to design a multivariate control chart that improves the applicability of the traditional Hotelling T2 chart. This new type of multivariate control chart displays…

Abstract

Purpose

This study aims to design a multivariate control chart that improves the applicability of the traditional Hotelling T2 chart. This new type of multivariate control chart displays sufficient information about the states and relationships of the variables in the production process. It is used to make better quality control decisions during the production process.

Design/methodology/approach

Multivariate data are collected at an equal time interval and are represented by nodes of the graph. The edges connecting the nodes represent the sequence of operation. Each node is plotted on the control chart based on their Hotelling T2 statistical distance. The changing behavior of each pair of input and output nodes is studied by the neural network. A case study from the cement industry is conducted to validate the control chart.

Findings

The finding of this paper is that the points and lines in the classic Hotelling T2 chart are effectively substituted by nodes and edges of the graph respectively. Nodes and edges have dimension and color and represent several attributes. As a result, this control chart displays much more information than the traditional Hotelling T2 control chart. The pattern of the plot represents whether the process is normal or not. The effect of the sequence of operation is visible in the control chart. The frequency of the happening of nodes is recognized by the size of nodes. The decision to change the product feature is assisted by finding the shortest path between nodes. Moreover, consecutive nodes have different behaviors, and that behavior change is recognized by neural network.

Originality/value

Modifying the classical Hotelling T2 control chart by integrating with the concept of graph theory and neural network is new of its kind.

Details

International Journal of Quality & Reliability Management, vol. 39 no. 7
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 3 May 2023

Bin Wang, Fanghong Gao, Le Tong, Qian Zhang and Sulei Zhu

Traffic flow prediction has always been a top priority of intelligent transportation systems. There are many mature methods for short-term traffic flow prediction. However, the…

Abstract

Purpose

Traffic flow prediction has always been a top priority of intelligent transportation systems. There are many mature methods for short-term traffic flow prediction. However, the existing methods are often insufficient in capturing long-term spatial-temporal dependencies. To predict long-term dependencies more accurately, in this paper, a new and more effective traffic flow prediction model is proposed.

Design/methodology/approach

This paper proposes a new and more effective traffic flow prediction model, named channel attention-based spatial-temporal graph neural networks. A graph convolutional network is used to extract local spatial-temporal correlations, a channel attention mechanism is used to enhance the influence of nearby spatial-temporal dependencies on decision-making and a transformer mechanism is used to capture long-term dependencies.

Findings

The proposed model is applied to two common highway datasets: METR-LA collected in Los Angeles and PEMS-BAY collected in the California Bay Area. This model outperforms the other five in terms of performance on three performance metrics a popular model.

Originality/value

(1) Based on the spatial-temporal synchronization graph convolution module, a spatial-temporal channel attention module is designed to increase the influence of proximity dependence on decision-making by enhancing or suppressing different channels. (2) To better capture long-term dependencies, the transformer module is introduced.

Details

Data Technologies and Applications, vol. 58 no. 1
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 16 March 2023

Yishan Liu, Wenming Cao and Guitao Cao

Session-based recommendation aims to predict the user's next preference based on the user's recent activities. Although most existing studies consider the global characteristics…

Abstract

Purpose

Session-based recommendation aims to predict the user's next preference based on the user's recent activities. Although most existing studies consider the global characteristics of items, they only learn the global characteristics of items based on a single connection relationship, which cannot fully capture the complex transformation relationship between items. We believe that multiple relationships between items in learning sessions can improve the performance of session recommendation tasks and the scalability of recommendation models. At the same time, high-quality global features of the item help to explore the potential common preferences of users.

Design/methodology/approach

This work proposes a session-based recommendation method with a multi-relation global context–enhanced network to capture this global transition relationship. Specifically, we construct a multi-relation global item graph based on a group of sessions, use a graded attention mechanism to learn different types of connection relations independently and obtain the global feature of the item according to the multi-relation weight.

Findings

We did related experiments on three benchmark datasets. The experimental results show that our proposed model is superior to the existing state-of-the-art methods, which verifies the effectiveness of our model.

Originality/value

First, we construct a multi-relation global item graph to learn the complex transition relations of the global context of the item and effectively mine the potential association of items between different sessions. Second, our model effectively improves the scalability of the model by obtaining high-quality item global features and enables some previously unconsidered items to make it onto the candidate list.

Details

Data Technologies and Applications, vol. 57 no. 4
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 3 November 2022

Yaqi Liu, Shuzhen Fang, Lingyu Wang, Chong Huan and Ruixue Wang

In recent years, personalized recommendations have facilitated easy access to users' personal information and historical interactions, thereby improving recommendation…

Abstract

Purpose

In recent years, personalized recommendations have facilitated easy access to users' personal information and historical interactions, thereby improving recommendation effectiveness. However, due to privacy risk concerns, it is essential to balance the accuracy of personalized recommendations with privacy protection. Accordingly, this paper aims to propose a neural graph collaborative filtering personalized recommendation framework based on federated transfer learning (FTL-NGCF), which achieves high-quality personalized recommendations with privacy protection.

Design/methodology/approach

FTL-NGCF uses a third-party server to coordinate local users to train the graph neural networks (GNN) model. Each user client integrates user–item interactions into the embedding and uploads the model parameters to a server. To prevent attacks during communication and thus promote privacy preservation, the authors introduce homomorphic encryption to ensure secure model aggregation between clients and the server.

Findings

Experiments on three real data sets (Gowalla, Yelp2018, Amazon-Book) show that FTL-NGCF improves the recommendation performance in terms of recall and NDCG, based on the increased consideration of privacy protection relative to original federated learning methods.

Originality/value

To the best of the authors’ knowledge, no previous research has considered federated transfer learning framework for GNN-based recommendation. It can be extended to other recommended applications while maintaining privacy protection.

Book part
Publication date: 14 November 2022

Krishna Teja Perannagari and Shaphali Gupta

Artificial neural networks (ANNs), which represent computational models simulating the biological neural systems, have become a dominant paradigm for solving complex analytical…

Abstract

Artificial neural networks (ANNs), which represent computational models simulating the biological neural systems, have become a dominant paradigm for solving complex analytical problems. ANN applications have been employed in various disciplines such as psychology, computer science, mathematics, engineering, medicine, manufacturing, and business studies. Academic research on ANNs is witnessing considerable publication activity, and there exists a need to track the intellectual structure of the existing research for a better comprehension of the domain. The current study uses a bibliometric approach to ANN business literature extracted from the Web of Science database. The study also performs a chronological review using science mapping and examines the evolution trajectory to determine research areas relevant to future research. The authors suggest that researchers focus on ANN deep learning models as the bibliometric results predict an expeditious growth of the research topic in the upcoming years. The findings reveal that business research on ANNs is flourishing and suggest further work on domains, such as back-propagation neural networks, support vector machines, and predictive modeling. By providing a systematic and dynamic understanding of ANN business research, the current study enhances the readers' understanding of existing reviews and complements the domain knowledge.

Details

Exploring the Latest Trends in Management Literature
Type: Book
ISBN: 978-1-80262-357-4

Keywords

1 – 10 of over 3000