Search results

1 – 10 of 10
Article
Publication date: 15 August 2016

Brian Torries, Amanda J. Sterling, Nima Shamsaei, Scott M. Thompson and Steve R. Daniewicz

The purpose of this study is to calibrate a microstructure-based fatigue model for its use in predicting fatigue life of additively manufactured (AM) Ti-6Al-4V. Fatigue models…

Abstract

Purpose

The purpose of this study is to calibrate a microstructure-based fatigue model for its use in predicting fatigue life of additively manufactured (AM) Ti-6Al-4V. Fatigue models that are capable of better predicting the fatigue behavior of AM metals is required to further the adoption of such metals by various industries. The trustworthiness of AM metallic material is not well characterized, and fatigue models that consider unique microstructure and porosity inherent to AM parts are needed.

Design/methodology/approach

Various Ti-6Al-4V samples were additively manufactured using Laser Engineered Net Shaping (LENS), a direct laser deposition method. The porosity within the LENS samples, as well as their subsequent heat treatment, was varied to determine the effects of microstructure and defects on fatigue life. The as-built and heat-treated LENS samples, together with wrought Ti-6Al-4V samples, underwent fatigue testing and microstructure and fractographic inspection. The collected microstructure/defect statistics were used for calibrating a microstructure-sensitive fatigue model.

Findings

Fatigue lives of the LENS Ti-6Al-4V samples were found to be consistently less than those of the wrought Ti-6Al-4V samples, and this is attributed to the presence of pores/defects within the LENS material. Results further indicate that LENS Ti-6Al-4V fatigue lives, as predicted by the used microstructure-sensitive fatigue model, are in close agreement with experimental results. The used model could predict upper and lower prediction bounds based on defect statistics. All the fatigue data were found to be within the bounds predicted by the microstructure-sensitive fatigue model.

Research limitations/implications

To further test the utility of microstructure-sensitive fatigue models for predicting fatigue life of AM samples, future studies on additional material types, additive manufacturing processes and heat treatments should be conducted.

Originality/value

This study shows the utility of a microstructure-sensitive fatigue model for use in predicting the fatigue life of LENS Ti-6Al-4V with various levels of porosity and while in a heat-treated condition.

Article
Publication date: 25 October 2018

Dylan Agius, Kyriakos I. Kourousis and Chris Wallbrink

The purpose of this paper is to examine the mechanical behaviour of additively manufactured Ti-6Al-4V under cyclic loading. Using as-built selective laser melting (SLM) Ti-6Al-4V…

Abstract

Purpose

The purpose of this paper is to examine the mechanical behaviour of additively manufactured Ti-6Al-4V under cyclic loading. Using as-built selective laser melting (SLM) Ti-6Al-4V in engineering applications requires a detailed understanding of its elastoplastic behaviour. This preliminary study intends to create a better understanding on the cyclic plasticity phenomena exhibited by this material under symmetric and asymmetric strain-controlled cyclic loading.

Design/methodology/approach

This paper investigates experimentally the cyclic elastoplastic behaviour of as-built SLM Ti-6Al-4V under symmetric and asymmetric strain-controlled loading histories and compares it to that of wrought Ti-6Al-4V. Moreover, a plasticity model has been customised to simulate effectively the mechanical behaviour of the as-built SLM Ti-6Al-4V. This model is formulated to account for the SLM Ti-6Al-4V-specific characteristics, under the strain-controlled experiments.

Findings

The elastoplastic behaviour of the as-built SLM Ti-6Al-4V has been compared to that of the wrought material, enabling characterisation of the cyclic transient phenomena under symmetric and asymmetric strain-controlled loadings. The test results have identified a difference in the strain-controlled cyclic phenomena in the as-build SLM Ti-6Al-4V when compared to its wrought counterpart, because of a difference in their microstructure. The plasticity model offers accurate simulation of the observed experimental behaviour in the SLM material.

Research limitations/implications

Further investigation through a more extensive test campaign involving a wider set of strain-controlled loading cases, including multiaxial (biaxial) histories, is required for a more complete characterisation of the material performance.

Originality/value

The present investigation offers an advancement in the knowledge of cyclic transient effects exhibited by a typical α’ martensite SLM Ti-6Al-4V under symmetric and asymmetric strain-controlled tests. The research data and findings reported are among the very few reported so far in the literature.

Details

Rapid Prototyping Journal, vol. 24 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 July 2023

Bo Liu, Yue-dong Wang, Zhe Zhang and Qi Dong

This paper aims to study and modify the notch equivalent stress method, as well as to establish the notch equivalent stress range S–N curve and apply it to the fatigue assessment…

Abstract

Purpose

This paper aims to study and modify the notch equivalent stress method, as well as to establish the notch equivalent stress range S–N curve and apply it to the fatigue assessment of engineering examples.

Design/methodology/approach

This paper studies the notch equivalent stress method and puts forward the concept of “singular equivalent crack”. Combined with the fatigue test results, by proposing to consider the singular coefficient of the transition angle of the welded structure and the introduction of material correction factors, this paper derives the notch equivalent stress equation for commonly used welded joints applicable to steel, and finally establishes the notch equivalent stress range of the S–N curve.

Findings

The obtained results show that the dispersion of fatigue data is 65.6 and 75.4% for T-joints and transverse cross-joints, respectively, under S–N curves using notched equivalent stress compared to the nominal stress range. The fatigue evaluation error of the modified notch equivalent stress equation for transverse cross welded joints improved by 50.65%, 53.1 and 39.6% on average, respectively, compared to the original other methods. The fatigue evaluation error for T-joints improved by 13.4 and 13.9%, respectively, compared to the original other methods.

Originality/value

There are relatively few studies on the fatigue assessment of notch equivalent stress method. In this paper, the notch equivalent stress method is studied and modified to improve the accuracy of fatigue assessment of welded structures with singular stresses.

Details

International Journal of Structural Integrity, vol. 14 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 5 January 2022

Kai Tan, Victor Postel, Yujia Liu, Dongtong Yang, Sen Tang, Chong Wang and Qingyuan Wang

Mechanical issues related to the information and growth of small cracks are considered to play a major role in very high cycle fatigue (VHCF) for metallic materials. Further…

Abstract

Purpose

Mechanical issues related to the information and growth of small cracks are considered to play a major role in very high cycle fatigue (VHCF) for metallic materials. Further efforts on better understanding in early stage of a crack are beneficial to estimating and preventing catastrophic damage for a long period service.

Design/methodology/approach

Dependent on the ultrasonic loading system, a novel method of in situ photomicroscope is established to study the crack behaviors in VHCF regime.

Findings

This in situ photomicroscope method provides advantages in combination with fatigue damage monitoring at high magnification, a large number of cycles, and efficiency. Visional investigation with attached image proceeding code proves that the method has high resolution on both size and time, which permits reliable accuracy on small crack growth rate. It is observed that the crack propagation trends slower in the overall small crack stage down to the level of 10–11 m/cycle. Strain analysis relays on a real-time recording which is applied by using digital image correlation. Infrared camera recording indicates the method is also suitable for thermodynamic study while growth of damage.

Originality/value

Benefiting from this method, it is more convenient and efficient to study the short crack propagation in VHCF regime.

Details

International Journal of Structural Integrity, vol. 13 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 12 September 2023

Min Zhan, Yajun Dai, Chang Liu, Xiangyu Wang, Lang Li, Yongjie Liu, Chao He and Qingyuan Wang

The purpose of this paper is to determine (1) the relationship between microstructure and fatigue cracking behavior and (2) effect of rolling on the process of crack initiation…

Abstract

Purpose

The purpose of this paper is to determine (1) the relationship between microstructure and fatigue cracking behavior and (2) effect of rolling on the process of crack initiation and propagation in FeCrAl alloys.

Design/methodology/approach

The qualitative and quantitative fracture studies were performed using scanning electron microscopy and the non-contact optical measurement system (IFMG5).

Findings

The results show that the formation of facets, rough facets and parallel stripes in the crack initiation and early crack propagation zones are closely related to the sensitivity of crack behavior to the microstructure of the material. Besides, the rolling process has a significant influence on the small crack initiation and propagation behavior. Quantitative analysis demonstrates that the size of the stress intensity factor and plastic zone size in the rough zone is associated with the rolling process.

Originality/value

The findings of this study have the potential to enhance the understanding of the microstructural crack formation mechanisms in FeCrAl alloys and shed light on the impact of rolling on the long-term and ultra-long fatigue behavior of these alloys. This new knowledge is vital for improving manufacturing processes and ensuring the safety and reliability of FeCrAl alloys used in nuclear industry applications.

Details

International Journal of Structural Integrity, vol. 14 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 17 October 2023

Zhixun Wen, Fei Li and Ming Li

The purpose of this paper is to apply the concept of equivalent initial flaw size (EIFS) to the anisotropic nickel-based single crystal (SX) material, and to predict the fatigue…

Abstract

Purpose

The purpose of this paper is to apply the concept of equivalent initial flaw size (EIFS) to the anisotropic nickel-based single crystal (SX) material, and to predict the fatigue life on this basis. The crack propagation law of SX material at different temperatures and the weak correlation of EIFS values verification under different loading conditions are also investigated.

Design/methodology/approach

A three-parameter time to crack initial (TTCI) method with multiple reference crack lengths under different loading conditions is established, which include the TTCI backstepping method and EIFS fitting method. Subsequently, the optimized EIFS distribution is obtained based on the random crack propagation rate and maximum likelihood estimation of median fatigue life. Then, an effective driving force based on anisotropic and mixed crack propagation mode is proposed to describe the crack propagation rate in the small crack stage. Finally, the fatigue life of three different temperature ESE(T) standard specimens is predicted based on the EIFS values under different survival rates.

Findings

The optimized EIFS distribution based on EIFS fitting - maximum likelihood estimation (MLE) method has the highest accuracy in predicting the total fatigue life, with the range of EIFS values being about [0.0028, 0.0875] (mm), and the mean value of EIFS being 0.0506 mm. The error between the predicted fatigue life based on the crack propagation rate and EIFS distribution for survival rates ranges from 5% to 95% and the experimental life is within two times dispersion band.

Originality/value

This paper systematically proposes a new anisotropic material EIFS prediction method, establishing a framework for predicting the fatigue life of SX material at different temperatures using fracture mechanics to avoid inaccurate anisotropic constitutive models and fatigue damage accumulation theory.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 2 February 2015

Michele Cerullo and Viggo Tvergaard

– The purpose of this paper is to carry out a set of micromechanical analyses to study the effect of small inclusions on fatigue life of wind turbine bearings.

Abstract

Purpose

The purpose of this paper is to carry out a set of micromechanical analyses to study the effect of small inclusions on fatigue life of wind turbine bearings.

Design/methodology/approach

The local stress concentrations around an inclusion are determined from a characteristic unit cell model containing a single inclusion, using the approximation of a 2D plane strain numerical analysis. The Dang Van multiaxial fatigue criterion is used for the local stresses in the matrix material, to ensure that the stresses remain within the fatigue limit. The matrix material is taken to be one of the most commonly used bearing steels, AISI 52100, and two different types of inclusions are considered. The macroscopic stress histories applied correspond to either a Hertzian or an elastohydrodynamic (EHL) contact pressure distribution under the rollers.

Findings

The paper shows that sub-surface fatigue failure due to rolling contact is more likely to develop close to the inclusion-matrix interface, at particular angles that depend on the material and on the inclusion orientation.

Originality/value

Inclusions represent an important issue in the design of wind turbine bearings, that are supposed to work in the very high cycle regime (N>109 cycles). This paper develops a micromechanical study that provides a deeper understanding on effect of inclusions on the fatigue life, according to one of the most used multiaxial fatigue criteria.

Details

International Journal of Structural Integrity, vol. 6 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 14 March 2023

Ming Li, Hongwei Liu, Juan Du, Zhixun Wen, Zhufeng Yue and Wei Sun

This paper presents a review concerning the analytical and inverse methods of small punch creep test (SPCT) in order to evaluate the mechanical property of component material at…

109

Abstract

Purpose

This paper presents a review concerning the analytical and inverse methods of small punch creep test (SPCT) in order to evaluate the mechanical property of component material at elevated temperature.

Design/methodology/approach

In this work, the effects of temperature, specimen size and shape on material properties are mainly discussed using the finite element (FE) method. The analytical approaches including membrane stretching, empirical or semi-empirical solutions that are currently used for data interpretation have been presented.

Findings

The state-of-the-art research progress on the inverse method, such as non-linear optimization program and neutral network, is critically reviewed. The capabilities of the inverse technique, the uniqueness of the solution and future development are discussed.

Originality/value

The state-of-the-art research progress on the inverse method such as non-linear optimization program and neutral network is critically reviewed. The capabilities of the inverse technique, the uniqueness of the solution and future development are discussed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 6 August 2019

Yongxiang Hu, Mengqi Lai, Zonghao Hu and Zhenqiang Yao

Laser additive manufacturing is widely utilized to fabricate the Ti6Al4V alloy, but it requires post-processing to improve its performance. This paper aims to propose laser…

Abstract

Purpose

Laser additive manufacturing is widely utilized to fabricate the Ti6Al4V alloy, but it requires post-processing to improve its performance. This paper aims to propose laser peening (LP) as an effective way to improve the surface characteristics of the Ti6Al4V alloy fabricated by direct laser deposition (DLD).

Design/methodology/approach

Surface integrity including surface roughness, porosity, residual stress and microhardness are investigated in detail before and after LP treatment. Microstructure evolution is characterized by the electron backscatter diffraction (EBSD) to analyze crystal phase, grain boundary misorientation and texture.

Findings

Multiple overlapping layers of LP treatment result in slight influence on the polished surface of DLD-built samples. Porosity measured by the Archimedes test is found to be greatly decreased after LP treatment. Compressive residual stresses are significantly induced, the magnitude of which is greatly increased by increasing layers of LP treatment. And, local weakening or enhancement of residual stress in depth is observed because of pore and inclusion defects in the DLD-built Ti6Al4V alloy. Favorable hardness property can be obtained after multiple overlapping layers of LP treatment. EBSD analysis shows that LP treatment with multiple layers can introduce a large amount of lower-angle boundaries, indicating that dislocations beneath the top surface could induce a strain-hardened layer. The microtexture of the DLD-built Ti6Al4V alloy cannot be eliminated to decrease the anisotropy of the mechanical property.

Research limitations/implications

The variation of porosity observed after LP inside the DLD-built Ti-Al-4V is attractive but requires more detailed work to analyze the evolution of pore geometry.

Practical implications

Surface treatment of an additive manufactured titanium alloy was carried out to improve its fatigue resistance.

Originality/value

This work is original in proposing LP as an effective post process for the surface treatment of an additive manufactured titanium alloy through analyzing the surface integrity and microstructure evolution.

Details

Rapid Prototyping Journal, vol. 25 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 December 2023

Hairui Jiang, Jianjun Guan, Yan Zhao, Yanhong Yang and Jinglong Qu

The purpose of this study is to investigate the corrosion resistance of superalloys subjected to ultrasonic impact treatment (UIT). The passive film growth on the superalloys’…

Abstract

Purpose

The purpose of this study is to investigate the corrosion resistance of superalloys subjected to ultrasonic impact treatment (UIT). The passive film growth on the superalloys’ surface is analyzed to illustrate the corrosion mechanism.

Design/methodology/approach

Electrochemical tests were used to investigated the corrosion resistance of GH4738 superalloys with different UIT densities. The microstructure was compared before and after the corrosion tests. The passive film characterization was described by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) tests.

Findings

The compressive residual stress and corrosion resistance of the specimens significantly increased after UIT. The order of corrosion resistance is related to the UIT densities, i.e. 1.96 s/mm2 > 1.71 s/mm2 > 0.98 s/mm2 > as-cast. The predominant constituents of the passive films are TiO2, Cr2O3, MoO3 and NiO. The passive film on the specimen with 1.96 s/mm2 UIT density has the highest volume fraction of Cr2O3 and MoO3, which is the main reason for its superior corrosion resistance.

Originality/value

This study provides quantitative corrosion data for GH4738 superalloys treated by ultrasonic impact. The corrosion mechanism is explained by the passive film’s characterization.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Access

Year

All dates (10)

Content type

1 – 10 of 10