Search results

1 – 10 of over 1000
Article
Publication date: 1 February 1979

R.J. PARKER and R.S. HODDER

ROLLING‐element bearings for aircraft turbine engine mainshaft applications are generally specified to be made of AISI M‐50 steel. Current aircraft turbine engine manufacturers'…

Abstract

ROLLING‐element bearings for aircraft turbine engine mainshaft applications are generally specified to be made of AISI M‐50 steel. Current aircraft turbine engine manufacturers' material specifications require a double vacuum melted (VIM‐VAR, for vacuum induction melt, vacuum arc smelt) AISI M‐50 steel for mainshaft bearings. With this material, ball bearing fatigue lives of nearly 100 times AFBMA predicted life have been obtained. Reduction in inclusion content, trace elements, and interstitial gas content is considered responsible for a major portion of this life advancement. AISI M‐50 also has the hot hardness and hardness retention ability for long‐life rolling‐element bearing operation at temperatures up to 588 K (600°F).

Details

Industrial Lubrication and Tribology, vol. 31 no. 2
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 21 December 2021

Li Cui and Yin Su

Rolling bearings often cause engineering accidents due to early fatigue failure. The study of early fatigue failure mechanism and fatigue life prediction does not consider the…

Abstract

Purpose

Rolling bearings often cause engineering accidents due to early fatigue failure. The study of early fatigue failure mechanism and fatigue life prediction does not consider the integrity of the bearing surface. The purpose of this paper is to find new rolling contact fatigue (RCF) life model of rolling bearing.

Design/methodology/approach

An elastic-plastic finite element (FE) fatigue damage accumulation model based on continuous damage mechanics is established. Surface roughness, surface residual stress and surface hardness of bearing rollers are considered. The fatigue damage and cumulative plastic strain during RCF process are obtained. Mechanism of early fatigue failure of the bearing is studied. RCF life of the bearing under different surface roughness, hardness and residual stress is predicted.

Findings

To obtain a more accurate calculation result of bearing fatigue life, the bearing surface integrity parameters should be considered and the elastic-plastic FE fatigue damage accumulation model should be used. There exist the optimal surface parameters corresponding to the maximum RCF life.

Originality/value

The elastic-plastic FE fatigue damage accumulation model can be used to obtain the optimized surface integrity parameters in the design stage of bearing and is helpful for promote the development of RCF theory of rolling bearing.

Details

Industrial Lubrication and Tribology, vol. 74 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 April 2019

Florian Pape, Oliver Maiss, Berend Denkena and Gerhard Poll

The efficient and economical use of natural resources is a big issue. Machine elements with a rolling contact are highly relevant because of their wide application in technical…

Abstract

Purpose

The efficient and economical use of natural resources is a big issue. Machine elements with a rolling contact are highly relevant because of their wide application in technical systems and a large production quantity. Innovative hard machining can reduce the friction and increase the fatigue strength of rolling element bearings. The purpose of this study is to focus on the surface properties of such parts.

Design/methodology/approach

A new model to predict bearing fatigue life is presented which takes compressive residual stresses in the bearing subsurface area into consideration. The investigated bearings were machined by the processes of hard turning, hard turning with subsequent deep rolling and a combination of hard turning and deep rolling (turn-rolling) in one process step. Changes in the residual stress state during bearing fatigue tests were investigated and the influence of residual stresses on the bearings fatigue life was researched.

Findings

Both combinations including the deep rolling process decrease the surface roughness and induce compressive residual stresses. As a result, the L10 fatigue life of roller bearings was increased by the factor of 2.5. Owing to the developed models, this effect can be considered within the design process.

Originality/value

In the context of the research program “Resource efficient Machine Elements (SPP1551),” machining processes of bearings were investigated regarding the bearing fatigue life. By inducing beneficial residual stresses on the bearings’ subsurface area, the fatigue life could be increased. Thus higher resource efficiency was achieved. To increase the productivity, a combination of hard turning and deep rolling was evaluated.

Details

Industrial Lubrication and Tribology, vol. 71 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 April 2006

Jaroslav Mackerle

To provide a selective bibliography for researchers working with bulk material forming (specifically the forging, rolling, extrusion and drawing processes) with sources which can…

4712

Abstract

Purpose

To provide a selective bibliography for researchers working with bulk material forming (specifically the forging, rolling, extrusion and drawing processes) with sources which can help them to be up‐to‐date.

Design/methodology/approach

A range of published (1996‐2005) works, which aims to provide theoretical as well as practical information on the material processing namely bulk material forming. Bulk deformation processes used in practice change the shape of the workpiece by plastic deformations under forces applied by tools and dies.

Findings

Provides information about each source, indicating what can be found there. Listed references contain journal papers, conference proceedings and theses/dissertations on the subject.

Research limitations/implications

It is an exhaustive list of papers (1,693 references are listed) but some papers may be omitted. The emphasis is to present papers written in English language. Sheet material forming processes are not included.

Practical implications

A very useful source of information for theoretical and practical researchers in computational material forming as well as in academia or for those who have recently obtained a position in this field.

Originality/value

There are not many bibliographies published in this field of engineering. This paper offers help to experts and individuals interested in computational analyses and simulations of material forming processes.

Details

Engineering Computations, vol. 23 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 January 2018

Ye Zhou, Caichao Zhu, Huaiju Liu, Chaosheng Song and Zufeng Li

Coatings are widely used in gears to keep interface from wearing excessively. The purpose of this paper is to study the effect of coating properties and working conditions on the…

Abstract

Purpose

Coatings are widely used in gears to keep interface from wearing excessively. The purpose of this paper is to study the effect of coating properties and working conditions on the pressure, the shear traction, stresses as well as the fatigue life of spur gear.

Design/methodology/approach

A numerical contact fatigue life model of a coated spur gear pair under elastohydrodynamic lubrication (EHL) is developed based on the characteristics of gear geometry and kinematics, lubrication conditions and material properties. Frequency response functions and the discrete convolute and fast Fourier transform (DC-FFT) algorithm are applied to obtain elastic deformation and stress. Mutil-axial fatigue criteria are used to evaluate the contact fatigue life based upon the predicted time-varying stress fields of coated bodies.

Findings

The maximum Mises stress decreases while the fatigue life increases as the coating modulus decreases. A thinner coating leads to a longer life and a smaller maximum Mises stress for hard coatings. The load has more significant effect on the contact fatigue life of soft coatings.

Originality/value

The developed model can be used to evaluate the contact fatigue life of coated gear under EHL and help designers analyze the effect of coating elastic modulus and thickness on the contact pressure, film thickness and stress.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 21 December 2023

Zhaoyang Wang, Bing Wu, Jiaqing Huang, Yuqi Yang and Guangwen Xiao

The purpose of this study is to develop a transient wheel–rail rolling contact model to primarily investigate the rail damage under wet condition when the train passes through the…

Abstract

Purpose

The purpose of this study is to develop a transient wheel–rail rolling contact model to primarily investigate the rail damage under wet condition when the train passes through the welded joints.

Design/methodology/approach

The impact force induced by welded joints is obtained through vehicle–track coupling dynamics. The normal and tangential wheel–rail contact pressures were solved by elastohydrodynamic lubrication (EHL) theory and simplified third-body layer theory, respectively. Then, the obtained tangential pressure and normal pressure were applied to the finite element model as moving loads, simulating cyclic loading. Finally, the shakedown map and critical plane method were used to predict rolling contact fatigue (RCF) and the initiation of fatigue cracks.

Findings

The results indicate that RCF will occur and fatigue cracks are more prone to appear on the subsurface of the rail, specifically around 2.7 mm below the rail surface in the vicinity of the welded joint and its heat-affected zone.

Originality/value

The cosimulation of numerical model and finite element model was implemented. The influence of surface roughness and fluids was considered. In this model, the normal and tangential wheel–rail contact pressure, the stress and strain and the rail fatigue cracks were obtained under a rail-welded joint excitation.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 February 2015

Michele Cerullo and Viggo Tvergaard

– The purpose of this paper is to carry out a set of micromechanical analyses to study the effect of small inclusions on fatigue life of wind turbine bearings.

Abstract

Purpose

The purpose of this paper is to carry out a set of micromechanical analyses to study the effect of small inclusions on fatigue life of wind turbine bearings.

Design/methodology/approach

The local stress concentrations around an inclusion are determined from a characteristic unit cell model containing a single inclusion, using the approximation of a 2D plane strain numerical analysis. The Dang Van multiaxial fatigue criterion is used for the local stresses in the matrix material, to ensure that the stresses remain within the fatigue limit. The matrix material is taken to be one of the most commonly used bearing steels, AISI 52100, and two different types of inclusions are considered. The macroscopic stress histories applied correspond to either a Hertzian or an elastohydrodynamic (EHL) contact pressure distribution under the rollers.

Findings

The paper shows that sub-surface fatigue failure due to rolling contact is more likely to develop close to the inclusion-matrix interface, at particular angles that depend on the material and on the inclusion orientation.

Originality/value

Inclusions represent an important issue in the design of wind turbine bearings, that are supposed to work in the very high cycle regime (N>109 cycles). This paper develops a micromechanical study that provides a deeper understanding on effect of inclusions on the fatigue life, according to one of the most used multiaxial fatigue criteria.

Details

International Journal of Structural Integrity, vol. 6 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 18 June 2019

Yuyan Zhang, Xiaoliang Yan, Xiaoqing Zhang, Juan Li and Fengna Cheng

This paper aims to investigate the effects of inhomogeneities on the rolling contact fatigue (RCF) life in elastohydrodynamically lubricated (EHL) point contacts.

98

Abstract

Purpose

This paper aims to investigate the effects of inhomogeneities on the rolling contact fatigue (RCF) life in elastohydrodynamically lubricated (EHL) point contacts.

Design/methodology/approach

A numerical model for predicting the RCF life of inhomogeneous materials in EHL contacts was established by combining the EHL model and the inclusion model through the eigen-displacement and then connecting to the RCF life model through the subsurface stresses. Effects of the type, size, location and orientation of a single inhomogeneity and the distribution of multiple inhomogeneities on the RCF life were investigated.

Findings

The RCF life of a half-space containing manganese sulfide (MnS) inhomogeneity or the mixed inhomogeneity of aluminium oxide (Al2O3) and calcium oxide (CaO) was longer than that for the case of Al2O3 inhomogeneity. For a single ellipsoidal MnS inhomogeneity, increases of its semi-axis length and decreases of its horizontal distance between the inhomogeneity and the contact center shortened the RCF life. Furthermore, the relationship between the depth of a single MnS inhomogeneity and the RCF life was found. For the half-space containing multiple inhomogeneitites, the RCF life decreased remarkably compared with the homogeneous half-space and showed discreteness.

Originality/value

This paper implements the prediction of the RCF life of inhomogeneous materials under EHL condition.

Details

Industrial Lubrication and Tribology, vol. 71 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 29 May 2020

Li Cui

Bearings in electric machines often work in high speed, light load and vibration load conditions. The purpose of this paper is to find a new fatigue damage accumulation rating…

4380

Abstract

Purpose

Bearings in electric machines often work in high speed, light load and vibration load conditions. The purpose of this paper is to find a new fatigue damage accumulation rating life model of ball bearings, which is expected for calculating fatigue life of ball bearings more accurately under vibration load, especially in high speed and light load conditions.

Design/methodology/approach

A new fatigue damage accumulation rating life model of ball bearings considering time-varying vibration load is proposed. Vibration equations of rotor-bearing system are constructed and solved by Runge–Kutta method. The modified rating life and modified reference rating life model under vibration load is also proposed. Contrast of the three fatigue life models and the influence of dynamic balance level, rotating speed, preload of ball bearings on bearing’s fatigue life are analyzed.

Findings

To calculate fatigue rating life of ball bearings more accurately under vibration load, especially in high speed and light load conditions, the fatigue damage accumulation rating life model should be considered. The optimum preload has an obvious influence on fatigue rating life.

Originality/value

This paper used analytical method and model that is helpful for design of steel ball bearing in high speed, light load and vibration load conditions.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2019-0180/

Details

Industrial Lubrication and Tribology, vol. 72 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 June 2016

Xin Zhao and Zili Li

– The purpose of this paper is to develop a numerical approach to solve the transient rolling contact problem with the consideration of velocity dependent friction.

308

Abstract

Purpose

The purpose of this paper is to develop a numerical approach to solve the transient rolling contact problem with the consideration of velocity dependent friction.

Design/methodology/approach

A three dimensional (3D) transient FE model is developed in elasticity by the explicit finite element method. Contact solutions with a velocity dependent friction law are compared in detail to those with the Coulomb’s friction law (i.e. a constant coefficient of friction).

Findings

The FE solutions confirm the negligible influence of the dependence on the normal contact. Hence, analysis is focussed on the tangential solutions under different friction exploitation levels. In the trailing part of the contact patch where micro-slip occurs, very high-frequency oscillations are excited in the tangential plane by the velocity dependent friction. This is similar to the non-uniform sliding or tangential oscillations observed in sliding contact. Consequently, the micro-slip distribution varies greatly with time. However, the surface shear stress distribution is quite stable at different instants, even though it significantly changes with the employed friction model.

Originality/value

This paper proposes an approach to solve the transient rolling contact problem with the consideration of velocity dependent friction. Such a problem was usually solved in the literature by the simplified contact algorithms, with which detailed contact solutions could not be obtained, or with the assumption of steady rolling.

Details

Engineering Computations, vol. 33 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of over 1000