Search results

1 – 10 of over 6000
Open Access
Article
Publication date: 8 June 2023

Tadej Dobravec, Boštjan Mavrič, Rizwan Zahoor and Božidar Šarler

This study aims to simulate the dendritic growth in Stokes flow by iteratively coupling a domain and boundary type meshless method.

Abstract

Purpose

This study aims to simulate the dendritic growth in Stokes flow by iteratively coupling a domain and boundary type meshless method.

Design/methodology/approach

A preconditioned phase-field model for dendritic solidification of a pure supercooled melt is solved by the strong-form space-time adaptive approach based on dynamic quadtree domain decomposition. The domain-type space discretisation relies on monomial augmented polyharmonic splines interpolation. The forward Euler scheme is used for time evolution. The boundary-type meshless method solves the Stokes flow around the dendrite based on the collocation of the moving and fixed flow boundaries with the regularised Stokes flow fundamental solution. Both approaches are iteratively coupled at the moving solid–liquid interface. The solution procedure ensures computationally efficient and accurate calculations. The novel approach is numerically implemented for a 2D case.

Findings

The solution procedure reflects the advantages of both meshless methods. Domain one is not sensitive to the dendrite orientation and boundary one reduces the dimensionality of the flow field solution. The procedure results agree well with the reference results obtained by the classical numerical methods. Directions for selecting the appropriate free parameters which yield the highest accuracy and computational efficiency are presented.

Originality/value

A combination of boundary- and domain-type meshless methods is used to simulate dendritic solidification with the influence of fluid flow efficiently.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 January 2023

Zhenjun Li and Chunyu Zhao

This paper aims to discuss the inverse problems that arise in various practical heat transfer processes. The purpose of this paper is to provide an identification method for…

Abstract

Purpose

This paper aims to discuss the inverse problems that arise in various practical heat transfer processes. The purpose of this paper is to provide an identification method for predicting the internal boundary conditions for thermal analysis of mechanical structure. A few examples of heat transfer systems are given to illustrate the applicability of the method and the challenges that must be addressed in solving the inverse problem.

Design/methodology/approach

In this paper, the thermal network method and the finite difference method are used to model the two-dimensional heat conduction inverse problem of the tube structure, and the heat balance equation is arranged into an explicit form for heat load prediction. To solve the matrix ill-conditioned problem in the process of solving the inverse problem, a Tikhonov regularization parameter selection method based on the inverse computation-contrast-adjustment-approach was proposed.

Findings

The applicability of the proposed method is illustrated by numerical examples for different dynamically varying heat source functions. It is proved that the method can predict dynamic heat source with different complexity.

Practical implications

The modeling calculation method described in this paper can be used to predict the boundary conditions for the inner wall of the heat transfer tube, where the temperature sensor cannot be placed.

Originality/value

This paper presents a general method for the direct prediction of heat sources or boundary conditions in mechanical structure. It can directly obtain the time-varying heat flux load and thtemperature field of the machine structure.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 April 2024

H.G. Di, Pingbao Xu, Quanmei Gong, Huiji Guo and Guangbei Su

This study establishes a method for predicting ground vibrations caused by railway tunnels in unsaturated soils with spatial variability.

Abstract

Purpose

This study establishes a method for predicting ground vibrations caused by railway tunnels in unsaturated soils with spatial variability.

Design/methodology/approach

First, an improved 2.5D finite-element-method-perfect-matching-layer (FEM-PML) model is proposed. The Galerkin method is used to derive the finite element expression in the ub-pl-pg format for unsaturated soil. Unlike the ub-v-w format, which has nine degrees of freedom per node, the ub-pl-pg format has only five degrees of freedom per node; this significantly enhances the calculation efficiency. The stretching function of the PML is adopted to handle the unlimited boundary domain. Additionally, the 2.5D FEM-PML model couples the tunnel, vehicle and track structures. Next, the spatial variability of the soil parameters is simulated by random fields using the Monte Carlo method. By incorporating random fields of soil parameters into the 2.5D FEM-PML model, the effect of soil spatial variability on ground vibrations is demonstrated using a case study.

Findings

The spatial variability of the soil parameters primarily affected the vibration acceleration amplitude but had a minor effect on its spatial distribution and attenuation over time. In addition, ground vibration acceleration was more affected by the spatial variability of the soil bulk modulus of compressibility than by that of saturation.

Originality/value

Using the 2.5D FEM-PML model in the ub-pl-pg format of unsaturated soil enhances the computational efficiency. On this basis, with the random fields established by Monte Carlo simulation, the model can calculate the reliability of soil dynamics, which was rarely considered by previous models.

Details

Engineering Computations, vol. 41 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 November 2023

Thiago Galdino Balista, Carlos Friedrich Loeffler, Luciano Lara and Webe João Mansur

This work compares the performance of the three boundary element techniques for solving Helmholtz problems: dual reciprocity, multiple reciprocity and direct interpolation. All…

Abstract

Purpose

This work compares the performance of the three boundary element techniques for solving Helmholtz problems: dual reciprocity, multiple reciprocity and direct interpolation. All techniques transform domain integrals into boundary integrals, despite using different principles to reach this purpose.

Design/methodology/approach

Comparisons here performed include the solution of eigenvalue and response by frequency scanning, analyzing many features that are not comprehensively discussed in the literature, as follows: the type of boundary conditions, suitable number of degrees of freedom, modal content, number of primitives in the multiple reciprocity method (MRM) and the requirement of internal interpolation points in techniques that use radial basis functions as dual reciprocity and direct interpolation.

Findings

Among the other aspects, this work can conclude that the solution of the eigenvalue and response problems confirmed the reasonable accuracy of the dual reciprocity boundary element method (DRBEM) only for the calculation of the first natural frequencies. Concerning the direct interpolation boundary element method (DIBEM), its interpolation characteristic allows more accessibility for solving more elaborate problems. Despite requiring a greater number of interpolating internal points, the DIBEM has presented higher-quality results for the eigenvalue and response problems. The MRM results were satisfactory in terms of accuracy just for the low range of frequencies; however, the neglected higher-order primitives impact the accuracy of the dynamic response as a whole.

Originality/value

There are safe alternatives for solving engineering stationary dynamic problems using the boundary element method (BEM), but there are no suitable comparisons between these different techniques. This paper presents the particularities and detailed comparisons approaching the accuracy of the three important BEM techniques, aiming at response and frequency evaluation, which are not found in the specialized literature.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 December 2023

Hongsen You, Mengying Gan, Dapeng Duan, Cheng Zhao, Yuan Chi, Shuai Gao and Jiansheng Yuan

This paper aims to develop a model that reflects the current transformer (CT) core materials nonlinearity. The model enables simulation and analysis of the CT excitation current…

Abstract

Purpose

This paper aims to develop a model that reflects the current transformer (CT) core materials nonlinearity. The model enables simulation and analysis of the CT excitation current that includes the inductive magnetizing current and the resistive excitation current.

Design/methodology/approach

A nonlinear CT model is established with the magnetizing current as the solution variable. This model presents the form of a nonlinear differential equation and can be solved discretely using the Runge–Kutta method.

Findings

By simulating variations in the excitation current for different primary currents, loads and core materials, the results demonstrate that enhancing the permeability of the BH curve leads to a more significant improvement in the CT ratio error at low primary currents.

Originality/value

The proposed model has three obvious advantages over the previous models with the secondary current as the solution variable: (1) The differential equation is simpler and easier to solve. Previous models contain the time differential terms of the secondary current and excitation flux or the integral term of the flux, making the iterative solution complicated. The proposed model only contains the time differential of the magnetizing current. (2) The accuracy of the excitation current obtained by the proposed model is higher. Previous models calculate the excitation current by subtracting the secondary current from the converted primary current. Because these two currents are much greater than the excitation current, the error of calculating the small excitation current by subtracting two large numbers is greatly enlarged. (3) The proposed model can calculate the distorted waveform of the excitation current and error for any form of time-domain primary current, while previous models can only obtain the effective value.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 September 2023

Niels Koester, Franz Pichler and Oszkar Biro

The purpose of this paper is to introduce a new method to model a stranded wire efficiently in 3D finite element simulations.

Abstract

Purpose

The purpose of this paper is to introduce a new method to model a stranded wire efficiently in 3D finite element simulations.

Design/methodology/approach

In this method, the stranded wires are numerically approximated with the Cauer ladder network (CLN) model order reduction method in 2D. This approximates the eddy current effect such as the skin and proximity effect for the whole wire. This is then projected to a mesh which does not include each strand. The 3D fields are efficiently calculated with the CLN method and are projected in the 3D geometry to be used in simulations of electrical components with a current vector potential and a homogenized conductivity at each time step.

Findings

In applications where the stranded wire geometry is known and does not change, this homogenization approach is an efficient and accurate method, which can be used with any stranded wire configuration, homogenized stranded wire mesh and any input signal dependent on time steps or frequencies.

Originality/value

In comparison to other methods, this method has no direct frequency dependency, which makes the method usable in the time domain for an arbitrary input signal. The CLN can also be used to interconnected stranded cables arbitrarily in electrical components.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 26 March 2024

Bernardo Nicoletti and Andrea Appolloni,

The logistics industry has undergone a tremendous transformation. This transformation is necessary to cope with the fundamental changes in customer expectations and the need for…

Abstract

Purpose

The logistics industry has undergone a tremendous transformation. This transformation is necessary to cope with the fundamental changes in customer expectations and the need for digitalization imposed by the pandemic, changes in the socioeconomic world, and innovative technology solutions. This paper aims to present digital transformation as an integrated framework for transforming the operating model and applying advanced solutions to the ecosystem of a quintile logistics (5PL) company. 5PL operators are typically an ecosystem. Loosely coupled or self-organized entities that collaborate in a symbiotic relationship represent this ecosystem. They aim to jointly develop capabilities, create innovative services or solutions, share knowledge, facilitate transactions, and leverage network synergies in a logistics environment to provide optimized or novel customer- or partner-centric solutions (Lamberjohann and Otto, 2020).

Design/methodology/approach

Currently, there is no single definition of an integrated logistics operations model in 5PL practice, so the qualitative method used in this paper allows for investigation from an exploratory perspective. The paper follows a qualitative research methodology, collecting and analyzing data/facts through interviews and visits to subject matter experts, industry practitioners, and academic researchers, combined with an extensive review of academic publications, industry reports, and written and media content from established organizations in the marketplace. This paper follows a qualitative research methodology, as it is an inquiry rather than a statistical study. The qualitative method allows the study of the concepts of phenomena and definitions, their characteristics, and the defining features that serve as the basis (Berg, 2007). It emphasizes generalized interpretation and deeper understanding of concepts, which would be more difficult in quantitative, statistically based research. Fact-finding was conducted in two ways: in-depth interviews with experts from academia, information and communication technology organizations, and key players in the logistics industry; and academic publications, industry reports, and written and media content from established national and international organizations in the market.

Findings

The operations model introduced considers six aspects: persons, processes, platforms, partners, protection and preservation. A virtual team approach can support the personal side of the 5PL ecosystem’s digital transformation. Managing a 5PL ecosystem should be based on collaborative planning, forecasting, and replenishment methods (Parsa et al., 2020). A digital platform can support trust among the stakeholders in the ecosystem. A blockchain solution can powerfully support the 5PL ecosystem from partner relationships’ points of view. The implementation of a cybersecurity reference model is important for protection (Bandari, 2023). Reverse logistics and an integrated approach support the preservation of the ecosystem.

Research limitations/implications

While the author has experience applying the different components of the operations model presented, it would be interesting to find a 5PL that would use all the components presented in an integrated way. The operations model presented applies to any similar ecosystem with minor adaptations.

Practical implications

This paper addresses operations models and digital transformation challenges for optimizing 5PL operators. It provides several opportunities and considerations for 5PL operators interested in improving their management and operations to cope with the growing challenges of today’s world.

Social implications

The competitiveness and long-term performance of 5PL operators depend on selecting and carefully implementing their operations models. This paper emphasizes the importance of using advanced operations models.

Originality/value

The operations model derives from the author’s personal experiences in research and the innovative application of these models to logistics operators (DHL, UPS, Poste Italiane and others). This paper brings together academic and industry perspectives and operations models in an integrated business digital transformation. This paper defines an original optimal operations model for a 5PL operator and can add sustainable value to organizations and society. In doing so, it outlines different solution requirements, the critical success factors and the challenges for solutions and brings logistical performance objectives when implementing a digital business transformation.

Details

Journal of Global Operations and Strategic Sourcing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-5364

Keywords

Article
Publication date: 5 September 2023

Lucas Silva and Alfredo Gay Neto

When establishing a mathematical model to simulate solid mechanics, considering realistic geometries, special tools are needed to translate measured data, possibly with noise…

Abstract

Purpose

When establishing a mathematical model to simulate solid mechanics, considering realistic geometries, special tools are needed to translate measured data, possibly with noise, into idealized geometrical entities. As an engineering application, wheel-rail contact interactions are fundamental in the dynamic modeling of railway vehicles. Many approaches used to solve the contact problem require a continuous parametric description of the geometries involved. However, measured wheel and rail profiles are often available as sets of discrete points. A reconstruction method is needed to transform discrete data into a continuous geometry.

Design/methodology/approach

The authors present an approximation method based on optimization to solve the problem of fitting a set of points with an arc spline. It consists of an initial guess based on a curvature function estimated from the data, followed by a least-squares optimization to improve the approximation. The authors also present a segmentation scheme that allows the method to increment the number of segments of the spline, trying to keep it at a minimal value, to satisfy a given error tolerance.

Findings

The paper provides a better understanding of arc splines and how they can be deformed. Examples with parametric curves and slightly noisy data from realistic wheel and rail profiles show that the approach is successful.

Originality/value

The developed methods have theoretical value. Furthermore, they have practical value since the approximation approach is better suited to deal with the reconstruction of wheel/rail profiles than interpolation, which most methods use to some degree.

Details

Engineering Computations, vol. 40 no. 7/8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 23 March 2023

Haftu Hailu Berhe, Hailekiros Sibhato Gebremichael and Kinfe Tsegay Beyene

Existing conceptual, empirical and case studies evidence suggests that manufacturing industries find the joint implementation of Kaizen philosophy initiatives. However, the…

1001

Abstract

Purpose

Existing conceptual, empirical and case studies evidence suggests that manufacturing industries find the joint implementation of Kaizen philosophy initiatives. However, the existing practices rarely demonstrated in a single framework and implementation procedure in a structure nature. This paper, therefore, aims to develop, validate and practically test a framework and implementation procedure for the implementation of integrated Kaizen in manufacturing industries to attain long-term improvement of operational, innovation, business (financial and marketing) processes, performance and competitiveness.

Design/methodology/approach

The study primarily described the problem, extensively reviewed the current state-of-the-art literature and then identified a gap. Based on it, generic and comprehensive integrated framework and implementation procedure is developed. Besides, the study used managers, consultants and academics from various fields to validate a framework and implementation procedure for addressing business concerns. In this case, the primary data was collected through self-administered questionnaire, and 244 valid questionnaires were received and were analyzed. Furthermore, the research verified the practicability of the framework by empirically exploring the current scenario of selected manufacturing companies.

Findings

The research discovered innovative framework and six-phase implementation procedure to fill the existing conceptual gap. Furthermore, the survey-based and exploratory empirical analysis of the research demonstrated that the practice of the proposed framework based on structured procedure is valued and companies attain the middling improvements of productivity, delivery time, quality, 5S practice, waste and accident rate by 61.03, 44, 52.53, 95.19, 80.12, and 70.55% respectively. Additionally, the companies saved a total of 14933446 ETH Birr and 5,658 M2 free spaces. Even though, the practices and improvements vary from company to company, and even companies unable to practice some of the unique techniques of the identified CI initiatives considered in the proposed framework.

Research limitations/implications

All data collected in the survey came from professionals working for Ethiopian manufacturing companies, universities and government. It is important to highlight that n = 244 is high sample size, which is adequate for a preliminary survey but reinforcing still needs further survey in terms of generalization of the results since there are hundreds of manufacturing companies, consultants and academicians implementing and consulting Kaizen. Therefore, a further study on a wider Ethiopian manufacturing companies, consultants and academic scale would be informative.

Practical implications

This work is very important for Kaizen professionals in the manufacturing industry, academic and government but in particular for senior management and leadership teams. Aside from the main findings on framework development, there is some strong evidence that practice of Kaizen resulted in achieving quantitative (monetary and non-monetary) and qualitative results. Thus, senior management teams should use this research out to practice and analyze the effect of Kaizen on their own organizations. Within the academic community, this study is one of the first focusing on development, validating and practically testing and should aid further study, research and understanding of Kaizen in manufacturing industries.

Originality/value

So far, it is rare to find preceding studies proposed, validated and practically test an integrated Kaizen framework with the context of manufacturing industries. Thus, authors understand that this is the very first research focused on the development of the framework for manufacturing industries continuously to be competitive and could help managers, institutions, practitioners and academicians in Kaizen practice.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 10
Type: Research Article
ISSN: 0265-671X

Keywords

Abstract

Details

Understanding Intercultural Interaction: An Analysis of Key Concepts, 2nd Edition
Type: Book
ISBN: 978-1-83753-438-8

1 – 10 of over 6000