Search results

1 – 10 of over 99000
Article
Publication date: 5 September 2018

Ramzi Lajili, Olivier Bareille, Mohamed Lamjed Bouazizi, Mohamed Ichchou and Noureddine Bouhaddi

This paper aims to propose numerical-based and experiment-based identification processes, accounting for uncertainties to identify structural parameters, in a wave propagation…

Abstract

Purpose

This paper aims to propose numerical-based and experiment-based identification processes, accounting for uncertainties to identify structural parameters, in a wave propagation framework.

Design/methodology/approach

A variant of the inhomogeneous wave correlation (IWC) method is proposed. It consists on identifying the propagation parameters, such as the wavenumber and the wave attenuation, from the frequency response functions. The latters can be computed numerically or experimentally. The identification process is thus called numerical-based or experiment-based, respectively. The proposed variant of the IWC method is then combined with the Latin hypercube sampling method for uncertainty propagation. Stochastic processes are consequently proposed allowing more realistic identification.

Findings

The proposed variant of the IWC method permits to identify accurately the propagation parameters of isotropic and composite beams, whatever the type of the identification process in which it is included: numerical-based or experiment-based. Its efficiency is proved with respect to an analytical model and the Mc Daniel method, considered as reference. The application of the stochastic identification processes shows good agreement between simulation and experiment-based results and that all identified parameters are affected by uncertainties, except damping.

Originality/value

The proposed variant of the IWC method is an accurate alternative for structural identification on wide frequency ranges. Numerical-based identification process can reduce experiments’ cost without significant loss of accuracy. Statistical investigations of the randomness of identified parameters illustrate the robustness of identification against uncertainties.

Article
Publication date: 18 April 2023

R. Anish and K. Shankar

The purpose of this paper is to apply the novel instantaneous power flow balance (IPFB)-based identification strategy to a specific practical situation like nonlinear lap joints…

Abstract

Purpose

The purpose of this paper is to apply the novel instantaneous power flow balance (IPFB)-based identification strategy to a specific practical situation like nonlinear lap joints having single and double bolts. The paper also investigates the identification performance of the proposed power flow method over conventional acceleration-matching (AM) methods and other methods in the literature for nonlinear identification.

Design/methodology/approach

A parametric model of the joint assembly formulated using generic beam element is used for numerically simulating the experimental response under sinusoidal excitations. The proposed method uses the concept of substructure IPFB criteria, whereby the algebraic sum of power flow components within a substructure is equal to zero, for the formulation of an objective function. The joint parameter identification problem was treated as an inverse formulation by minimizing the objective function using the Particle Swarm Optimization (PSO) algorithm, with the unknown parameters as the optimization variables.

Findings

The errors associated with identified numerical results through the instantaneous power flow approach have been compared with the conventional AM method using the same model and are found to be more accurate. The outcome of the proposed method is also compared with other nonlinear time-domain structural identification (SI) methods from the literature to show the acceptability of the results.

Originality/value

In this paper, the concept of IPFB-based identification method was extended to a more specific practical application of nonlinear joints which is not reported in the literature. Identification studies were carried out for both single-bolted and double-bolted lap joints with noise-free and noise-contamination cases. In the current study, only the zone of interest (substructure) needs to be modelled, thus reducing computational complexity, and only interface sensors are required in this method. If the force application point is outside the substructure, there is no need to measure the forcing response also.

Article
Publication date: 1 April 2006

Janita F.J. Vos and Marjolein C. Achterkamp

The management of stakeholder involvement within innovation projects is a task of growing importance. The purpose of this paper is to present a method for the first challenge in…

8033

Abstract

Purpose

The management of stakeholder involvement within innovation projects is a task of growing importance. The purpose of this paper is to present a method for the first challenge in stakeholder management: the identification of those stakeholders to be involved in innovation projects.

Design/methodology/approach

Analysis of stakeholder literature leads to the conclusion that stakeholder identification is considered a problem of classification. Although the availability of a classification model is necessary, it is argued that for a classification model to be of use in identifying stakeholders, such a model needs to be supplemented with an identification procedure for identifying real world parties. Furthermore, a classification model should fit the context the stakeholders are identified for, in this case for innovation projects. These insights have led to the development of a classification model fitting the innovation context, and to the embedding of this model, along with a matching identification procedure, in an identification method.

Findings

A partial and integral evaluation of the method on four cases showed its efficacy in the managerial practice of identifying stakeholders within innovation projects.

Originality/value

The method as proposed in the paper can be used for identifying stakeholders in innovation projects. The method can be considered a first step in managing stakeholder involvement.

Details

European Journal of Innovation Management, vol. 9 no. 2
Type: Research Article
ISSN: 1460-1060

Keywords

Article
Publication date: 12 December 2023

Jian Zhou, Shuyu Liu, Jian Lu and Xinyu Liu

The purpose of this paper is to introduce an improved system identification method for small unmanned helicopters combining adaptive ant colony optimization algorithm and Levy’s…

Abstract

Purpose

The purpose of this paper is to introduce an improved system identification method for small unmanned helicopters combining adaptive ant colony optimization algorithm and Levy’s method and to solve the problem of low model prediction accuracy caused by low-frequency domain curve fitting in the small unmanned helicopter frequency domain parameter identification method.

Design/methodology/approach

This method uses the Levy method to obtain the initial parameters of the fitting model, uses the global optimization characteristics of the adaptive ant colony algorithm and the advantages of avoiding the “premature” phenomenon to optimize the initial parameters and finally obtains a small unmanned helicopter through computational optimization Kinetic models under lateral channel and longitudinal channel.

Findings

The algorithm is verified by flight test data. The verification results show that the established dynamic model has high identification accuracy and can accurately reflect the dynamic characteristics of small unmanned helicopter flight.

Originality/value

This paper presents a novel and improved frequency domain identification method for small unmanned helicopters. Compared with the conventional method, this method improves the identification accuracy and reduces the identification error.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 28 May 2019

Xiaofeng Liu, Bangzhao Zhou, Boyang Xiao and Guoping Cai

The purpose of this paper is to present a method to obtain the inertia parameter of a captured unknown space target.

Abstract

Purpose

The purpose of this paper is to present a method to obtain the inertia parameter of a captured unknown space target.

Design/methodology/approach

An inertia parameter identification method is proposed in the post-capture scenario in this paper. This method is to resolve parameter identification with two steps: coarse estimation and precise estimation. In the coarse estimation step, all the robot arms are fixed and inertia tensor of the combined system is first calculated by the angular momentum conservation equation of the system. Then, inertia parameters of the unknown target are estimated using the least square method. Second, in the precise estimation step, the robot arms are controlled to move and then inertia parameters are once again estimated by optimization method. In the process of optimization, the coarse estimation results are used as an initial value.

Findings

Numerical simulation results prove that the method presented in this paper is effective for identifying the inertia parameter of a captured unknown target.

Practical implications

The presented method can also be applied to identify the inertia parameter of space robot.

Originality/value

In the classic momentum-based identification method, the linear momentum and angular momentum of system, both considered to be conserved, are used to identify the parameter of system. If the elliptical orbit in space is considered, the conservation of linear momentum is wrong. In this paper, an identification based on the conservation of angular momentum and dynamics is presented. Compared with the classic momentum-based method, this method can get a more accurate identification result.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 November 2015

Bahram Tarvirdizadeh, Esmaeel Khanmirza, Morteza Ebrahimi, Ahmad Kalhor and Shidvash Vakilipour

The purpose of this paper is to propose an efficient and straightforward approach for system identification of a rotating single link flexible manipulator (RSLFM). Also, the…

Abstract

Purpose

The purpose of this paper is to propose an efficient and straightforward approach for system identification of a rotating single link flexible manipulator (RSLFM). Also, the achieved results are experimentally validated through identification procedure.

Design/methodology/approach

The proposed system identification approach is applied to a RSLFM with a tip mass. At first, the dynamic model of the system is derived using Lagrange method. Then, an efficient method is developed for identification of such a system. This method facilitates the nonlinear complicated identification problem of the RSLFM to a simplified root finding problem.

Findings

The main advantage of the developed method is to convert a complicated system identification process to a simple nonlinear equation solution. This approach uses small-size input/output data set and requires a short-time interval of data acquisition, which gives important advantages in lower computational load and lower execution time. The investigated approach is studied on experimental system identification of a single link flexible manipulator. To demonstrate this fact, the developed method is successfully applied in identification of two other mechanical systems; the inverted pendulum on a cart and the ball and beam apparatus.

Originality/value

In this work, the proposed identification approach has been originally applied to a RSLFM and two other mechanical examples. All obtained identification results show the performance and applicability of the developed method clearly. This approach is not restricted in using state space or transfer function. It has significant superiority in comparison with other known approaches including autoregressive with exogenous input (ARX) and Box-Jenkins (BJ).

Details

Engineering Computations, vol. 32 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 15 September 2020

Daniel Scott

The purpose of this paper is to compare gang member identification methods across regions in the United States as reported by law enforcement.

Abstract

Purpose

The purpose of this paper is to compare gang member identification methods across regions in the United States as reported by law enforcement.

Design/methodology/approach

The data were collected through surveys with various law enforcement jurisdictions in both urban and rural communities across the United States. Methods of gang member identification were compared across the United States. Region through the use of Ordinal Logistic Regression and Multiple Imputation.

Findings

The results reveal that there are systematic variations in methods of gang member identification across regions in the United States. Specifically, the West is significantly more likely to identify gang members through associations or arrests with known gang members, symbols and self-nomination compared to other regions. The South, Northeast and Midwest regions are significantly more likely to identify gang members through a reliable informant compared to the West.

Originality/value

Research has not compared gang member identification methods across region in the United States or examined how variations in gang member identification methods potentially impact the accuracy of reported gang problems and prevalence.

Details

Policing: An International Journal, vol. 43 no. 5
Type: Research Article
ISSN: 1363-951X

Keywords

Article
Publication date: 4 December 2023

Feifei Zhong, Guoping Liu, Zhenyu Lu, Lingyan Hu, Yangyang Han, Yusong Xiao and Xinrui Zhang

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by…

Abstract

Purpose

Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by establishing a dynamic model through the identification of the dynamic parameters of a self-designed robotic arm.

Design/methodology/approach

This study proposes an improved particle swarm optimization (IPSO) method for parameter identification, which comprehensively improves particle initialization diversity, dynamic adjustment of inertia weight, dynamic adjustment of local and global learning factors and global search capabilities. To reduce the number of particles and improve identification accuracy, a step-by-step dynamic parameter identification method was also proposed. Simultaneously, to fully unleash the dynamic characteristics of a robotic arm, and satisfy boundary conditions, a combination of high-order differentiable natural exponential functions and traditional Fourier series is used to develop an excitation trajectory. Finally, an arbitrary verification trajectory was planned using the IPSO to verify the accuracy of the dynamical parameter identification.

Findings

Experiments conducted on a self-designed robotic arm validate the proposed parameter identification method. By comparing it with IPSO1, IPSO2, IPSOd and least-square algorithms using the criteria of torque error and root mean square for each joint, the superiority of the IPSO algorithm in parameter identification becomes evident. In this case, the dynamic parameter results of each link are significantly improved.

Originality/value

A new parameter identification model was proposed and validated. Based on the experimental results, the stability of the identification results was improved, providing more accurate parameter identification for further applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 18 January 2024

Zaihua Luo, Juliang Xiao, Sijiang Liu, Mingli Wang, Wei Zhao and Haitao Liu

This paper aims to propose a dynamic parameter identification method based on sensitivity analysis for the 5-degree of freedom (DOF) hybrid robots, to solve the problems of too…

Abstract

Purpose

This paper aims to propose a dynamic parameter identification method based on sensitivity analysis for the 5-degree of freedom (DOF) hybrid robots, to solve the problems of too many identification parameters, complex model, difficult convergence of optimization algorithms and easy-to-fall into a locally optimal solution, and improve the efficiency and accuracy of dynamic parameter identification.

Design/methodology/approach

First, the dynamic parameter identification model of the 5-DOF hybrid robot was established based on the principle of virtual work. Then, the sensitivity of the parameters to be identified is analyzed by Sobol’s sensitivity method and verified by simulation. Finally, an identification strategy based on sensitivity analysis was designed, experiments were carried out on the real robot and the results were verified.

Findings

Compared with the traditional full-parameter identification method, the dynamic parameter identification method based on sensitivity analysis proposed in this paper converges faster when optimized using the genetic algorithm, and the identified dynamic model has higher prediction accuracy for joint drive forces and torques than the full-parameter identification models.

Originality/value

This work analyzes the sensitivity of the parameters to be identified in the dynamic parameter identification model for the first time. Then a parameter identification method is proposed based on the results of the sensitivity analysis, which can effectively reduce the parameters to be identified, simplify the identification model, accelerate the convergence of the optimization algorithm and improve the prediction accuracy of the identified model for the joint driving forces and torques.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 3 March 2023

Yanbing Ni, Yizhang Cui, Shilei Jia, Chenghao Lu and Wenliang Lu

The purpose of this paper is to propose a method for selecting the position and attitude trajectory of error measurement to improve the kinematic calibration efficiency of a one…

Abstract

Purpose

The purpose of this paper is to propose a method for selecting the position and attitude trajectory of error measurement to improve the kinematic calibration efficiency of a one translational and two rotational (1T2R) parallel power head and to improve the error compensation effect by improving the properties of the error identification matrix.

Design/methodology/approach

First, a general mapping model between the endpoint synthesis error is established and each geometric error source. Second, a model for optimizing the position and attitude trajectory of error measurement based on sensitivity analysis results is proposed, providing a basis for optimizing the error measurement trajectory of the mechanism in the working space. Finally, distance error measurement information and principal component analysis (PCA) ideas are used to construct an error identification matrix. The robustness and compensation effect of the identification algorithm were verified by simulation and through experiments.

Findings

Through sensitivity analysis, it is found that the distribution of the sensitivity coefficient of each error source in the plane of the workspace can approximately represent its distribution in the workspace, and when the end of the mechanism moves in a circle with a large nutation angle, the comprehensive influence coefficient of each sensitivity is the largest. Residual analysis shows that the robustness of the identification algorithm with the idea of PCA is improved. Through experiments, it is found that the compensation effect is improved.

Originality/value

A model for optimizing the position and attitude trajectory of error measurement is proposed, which can effectively improve the error measurement efficiency of the 1T2R parallel mechanism. In addition, the PCA idea is introduced. A least-squares PCA error identification algorithm that improves the robustness of the identification algorithm by improving the property of the identification matrix is proposed, and the compensation effect is improved. This method has been verified by experiments on 1T2R parallel mechanism and can be extended to other similar parallel mechanisms.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 99000