Search results

1 – 10 of 95
Article
Publication date: 1 June 2022

Xiaopeng Wang, Kun Peng, Meiyun Zhao, Hongliang Tian and Hongling Qin

The purpose of this paper is to propose a wheel/rail mixed lubrication model to study the water lubrication behavior of wheel/rail contact interface.

Abstract

Purpose

The purpose of this paper is to propose a wheel/rail mixed lubrication model to study the water lubrication behavior of wheel/rail contact interface.

Design/methodology/approach

The numerical simulation method is applied in this paper. A deterministic mixed lubrication model considering surface roughness and transient state is established. The quasi-system numerical and finite difference method are used for numerical solution. The model is verified by comparing with the experimental data in the literature under the same conditions.

Findings

Under wet conditions, the change of train speed will change the lubrication state of the wheel/rail contact interface. With an increasing speed, the average film thickness and the film thickness ratio increase, while the adhesion coefficient, the contact load ratio and the contact area ratio decrease. When the creep ratio increases from 0% to 0.5%, the wheel/rail adhesion coefficient and subsurface stress increase sharply. With the increase of axle load, the average film thickness decreases and the adhesion coefficient increases.

Practical implications

This paper aims to improve the mixed lubrication theory by analyzing the characteristics of wheel/rail friction and lubrication, so as to provide some guidance and theory for train driving behavior.

Originality/value

Using the deterministic model, the lubrication state of the wheel/rail contact interface affected by various external factors and the adhesion behavior of wheel/rail progressive process from boundary lubrication to mixed lubrication are studied.

Details

Industrial Lubrication and Tribology, vol. 74 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 September 2023

Peiwen Sun, Jianwei Yang, AiHua Zhu, Zhongshuo Hu, Jinhai Wang, Fu Liu and Xiaohui Wang

The CL60 steel wheels of subway vehicles operating on specific lines require frequent refurbishment due to rapid wear and tear. Considering this issue, MoS2-based and…

Abstract

Purpose

The CL60 steel wheels of subway vehicles operating on specific lines require frequent refurbishment due to rapid wear and tear. Considering this issue, MoS2-based and graphite-based solid lubricants are used to reduce the wear rate of subway wheels and extend their service life.

Design/methodology/approach

Under laboratory conditions, the effect of MoS2-based and graphite-based solid lubricants on the friction and wear performance of subway wheels and rails was evaluated using a modified GPM-60 wear testing machine.

Findings

Under laboratory conditions, MoS2-based solid lubricants have the best effect in reducing wheel/rail wear, compared to the control group without lubrication, at 2 × 105 revolutions, the total wheel-rail wear decreased by 95.07%. However, when three types of solid lubricants are used separately, the hardness evolution of the wheel-rail contact surface exhibits different characteristics.

Practical implications

The research results provide important support for improving the lifespan of wheel and rail, extending the service cycle of wheel and rail, reducing the operating costs of subway systems, improving the safety of subway systems and providing wear reduction maintenance for other high wear mechanical components.

Originality/value

The experiment was conducted through the design and modification of a GPM-60 testing machine for wear testing. The experiment simulated the wheel-rail contact situation under actual subway operation and evaluated the effects of three different solid lubricants, MoS2-based and graphite-based, on the wear performance and surface hardening evolution of subway wheel-rail.

Details

Industrial Lubrication and Tribology, vol. 75 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 May 2023

Yuqi Yang, Bing Wu, Guanwen Xiao and Quan Shen

The purpose of this study is to develop a 3D wheel-rail adhesion model under wet condition, which considers the generated surface roughness topography and the traditional braking…

Abstract

Purpose

The purpose of this study is to develop a 3D wheel-rail adhesion model under wet condition, which considers the generated surface roughness topography and the traditional braking procedure for high-speed trains.

Design/methodology/approach

Wheel-rail adhesion has an important effect on the braking ability of railway vehicle. Based on the deterministic mixed lubrication approach, the model was solved to get the adhesion characteristics of the train during braking. The elastic deformation was calculated with the discrete convolution and fast Fourier transform method. The simulation results of adhesion coefficient were compared with the experimental values. The wheel-rail adhesion characteristics of train braking at several different initial speeds were investigated. The effects of the time-step length and roughness orientation on the contact load ratio were also discussed.

Findings

The results show that the adhesion coefficient of the numerical model is in good agreement with the experimental results. At the instant of braking, the adhesion coefficient drops to a lower adhesion level, the value of adhesion coefficient is lower than 0.06, especially at a higher speed (200, 300 and 400 km/h).

Originality/value

It can provide a better understanding of the low adhesion phenomenon of train braking under wet condition.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-02-2023-0040/

Details

Industrial Lubrication and Tribology, vol. 75 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 January 2023

Qunsheng Wang, Bin Zhu, Fubin Zhang, Xuesong Jiang and Jie Wang

While the normal wheel–rail contact model cannot be accurately used for light rail transit (LRT) wheel wear analysis with large wheelset lateral displacement and wheelset yaw…

71

Abstract

Purpose

While the normal wheel–rail contact model cannot be accurately used for light rail transit (LRT) wheel wear analysis with large wheelset lateral displacement and wheelset yaw angle, a modified semi-Hertzian contact model (MSHM) is proposed in the paper.

Design/methodology/approach

MSHM was first proposed to consider the wheelset motion with the lateral displacement and the yaw angle. Then, a dynamic model of an LRT was established and the influence of some key factors on wheel wear is analyzed. At last, after operating for a certain mileage, the predicted wheel wear is compared with the tested wheel wear.

Findings

Compared with the tested wheel wear, the predicted wheel wear shows a good agreement with the measured result, verifying the accuracy of MSHM.

Originality/value

Considering larger wheelset lateral displacement and yaw angle, MSHM can be used to calculate the wheel wear of the LRT with high accuracy.

Details

Industrial Lubrication and Tribology, vol. 75 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 29 March 2024

Xingwen Wu, Zhenxian Zhang, Wubin Cai, Ningrui Yang, Xuesong Jin, Ping Wang, Zefeng Wen, Maoru Chi, Shuling Liang and Yunhua Huang

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Abstract

Purpose

This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.

Design/methodology/approach

Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators. Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration. This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration, including a brief introduction of short-pitch irregularities, associated high frequency vibration in railway bogie, typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.

Findings

The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms. The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components. The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure, and the fatigue crack usually initiates from the defect of the weld seam. Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities. The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment, and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.

Originality/value

The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 17 May 2022

Chongyi Chang, Yuanwu Cai, Bo Chen, Qiuze Li and Pengfei Lin

In service, the periodic clashes of wheel flat against the rail result in large wheel/rail impact force and high-frequency vibration, leading to severe damage on the wheelset…

Abstract

Purpose

In service, the periodic clashes of wheel flat against the rail result in large wheel/rail impact force and high-frequency vibration, leading to severe damage on the wheelset, rail and track structure. This study aims to analyze characteristics and dynamic impact law of wheel and rail caused by wheel flat of high-speed trains.

Design/methodology/approach

A full-scale high-speed wheel/rail interface test rig was used for the test of the dynamic impact of wheel/rail caused by wheel flat of high-speed train. With wheel flats of different lengths, widths and depths manually set around the rolling circle of the wheel tread, and wheel/rail dynamic impact tests to the flats in the speed range of 0–400 km/h on the rig were conducted.

Findings

As the speed goes up, the flat induced the maximum of the wheel/rail dynamic impact force increases rapidly before it reaches its limit at the speed of around 35 km/h. It then goes down gradually as the speed continues to grow. The impact of flat wheel on rail leads to 100–500 Hz middle-frequency vibration, and around 2,000 Hz and 6,000 Hz high-frequency vibration. In case of any wheel flat found during operation, the train speed shall be controlled according to the status of the flat and avoid the running speed of 20 km/h–80 km/h as much as possible.

Originality/value

The research can provide a new method to obtain the dynamic impact of wheel/rail caused by wheel flat by a full-scale high-speed wheel/rail interface test rig. The relations among the flat size, the running speed and the dynamic impact are hopefully of reference to the building of speed limits for HSR wheel flat of different degrees.

Details

Railway Sciences, vol. 1 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 30 November 2018

AiHua Zhu, Si Yang, Qiang Li, JianWei Yang, Xi Li and YiDong Xie

The purpose of this paper is to study the wear evolution of metro wheels under the conditions of different track sequences, track composition and vehicle load and then to predict…

283

Abstract

Purpose

The purpose of this paper is to study the wear evolution of metro wheels under the conditions of different track sequences, track composition and vehicle load and then to predict wheel wear and to guide its maintenance.

Methodology

By using the SIMPACK and MATLAB software, numerical simulation analysis of metro wheel wear is carried out based on Hertz theory, the FASTSIM algorithm and the Archard model. First of all, the vehicle dynamics model is established to calculate the motion relationship and external forces of wheel-rail in the SIMPACK software. Then, the normal force of wheel-rail is solved based on Hertz theory, and the tangential force of wheel-rail is calculated based on the FASTSIM algorithm through the MATLAB software. Next, in the MATLAB software, the wheel wear is calculated based on the Archard model, and a new wheel profile is obtained. Finally, the new wheel profile is re-input into the vehicle system dynamics model in the SIMPACK software to carry out cyclic calculation of wear.

Findings

The results show that the setting order of different curves has an obvious influence on wear when the proportion of the straight track and the curve is fixed. With the increase in running mileage, the severe wear zone is shifted from tread to flange root under the condition of the sequence-type track, but the wheel wear distribution is basically stable for the unit-type track, and their wear growth rates become closer. In the tracks with different straight-curved ratio, the more proportion the curved tracks occupy, the closer the severe wear zone is shifted to flange root. At the same time, an increase in weight of the vehicle load will aggravate the wheel wear, but it will not change the distribution of wheel wear. Compared with the measured data of one city B type metro in China, the numerical simulation results of wheel wear are nearly the same with the measured data.

Practical implications

These results will be helpful for metro tracks planning and can predict the trend of wheel wear, which has significant importance for the vehicle to do the repair operation. At the same time, the security risks of the vehicle are decreased economically and effectively.

Originality/value

At present, many scholars have studied the influence of metro tracks on wheel wear, but mainly focused on a straight line or a certain radius curve and neglected the influence of track sequence and track composition. This study is the first to examine the influence of track sequence on metro wheel wear by comparing the sequence-type track and unit-type track. The results show that the track sequence has a great influence on the wear distribution. At the same time, the influence of track composition on wheel wear is studied by comparing different straight-curve ratio tracks; therefore, wheel wear can be predicted integrally under different track conditions.

Details

Industrial Lubrication and Tribology, vol. 71 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 July 2023

Hongxiao Li and Li Li

The purpose of this study is to match appropriate friction coefficients for subway operational vehicles, considering the dynamic variations of wheel profile wear.

Abstract

Purpose

The purpose of this study is to match appropriate friction coefficients for subway operational vehicles, considering the dynamic variations of wheel profile wear.

Design/methodology/approach

This study combines experimental testing and numerical simulation to investigate the influence of wheel profile wear coupled with the friction coefficient on the vehicle dynamic response.

Findings

For the test route in this paper, it is recommended to control the friction coefficient on straight sections between 0.25 and 0.3, and on curved sections between 0.2 and 0.3. This satisfies the required adhesion coefficient for normal train traction and braking, while also ensuring the straight running performance and curve negotiation performance of the vehicle.

Practical implications

Reasonable friction coefficient ranges are proposed for straight and curved track lines to improve the operational safety and economy of the vehicles. Moreover, this study can provide a theoretical basis and reference direction for developing anti-wear measures for rail vehicles operating on fixed routes.

Originality/value

Considering the wear characteristics of operating vehicles and the dynamic changes in the wear profile, this paper explores the adaptability of different degrees of wheel wear profiles to different friction coefficients. Based on the response characteristics of vehicle dynamics, reasonable lubrication recommendations are proposed for this operating vehicle.

Details

Industrial Lubrication and Tribology, vol. 75 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 29 May 2019

Xue Ping Wang, He Ma and Jun Zhang

The increasing demands of high-speed railway transportation aggravate the wheel and rail surface wear. It is of great significance to repair the worn wheel timely by predicting…

Abstract

Purpose

The increasing demands of high-speed railway transportation aggravate the wheel and rail surface wear. It is of great significance to repair the worn wheel timely by predicting the wheel and rail surface wear, which will improve both the service life of the wheel and rail and the safe operation of the train. The purpose of this study is to propose a new prediction method of wheel tread wear, which can provide some reference for selecting proper re-profiling period of wheel.

Design/methodology/approach

The standard and worn wheel profiles were first matched with the standard 60N rail profile, and then the wheel/rail finite element models (FEMs) were established for elastic-plastic contact calculation. A calculation method of the friction work was proposed based on contact analysis. Afterwards, a simplified method for calculating wheel tread wear was presented and the wear with different running mileages was predicted.

Findings

The wheel tread wear increased the relative displacement and friction of contact spots. There was obvious fluctuation in the wheel tread friction work curve of the worn model. The wear patterns predicted in the present study were in accordance with the actual situation, especially in the worn model.

Originality/value

In summary, the simplified method based on FEM presented in this paper could effectively calculate wheel tread wear and predict the wear patterns. It would provide valuable clews for the wheel repair work.

Details

Industrial Lubrication and Tribology, vol. 71 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 November 2023

Yayun Qi, Shuyu Li, Zhaowei Chen and Ruian Wang

With the continuous increase in the operating speed of high-speed trains, the wear and tear of rails on high-speed lines has also gradually deteriorated. At present, the…

Abstract

Purpose

With the continuous increase in the operating speed of high-speed trains, the wear and tear of rails on high-speed lines has also gradually deteriorated. At present, the phenomenon of asymmetric wear of rails in high-speed lines is relatively serious. This paper aims to analyze the effect of three typical rail profile wear on vehicle operation performance.

Design/methodology/approach

To solve this problem, by analyzing the wheel-rail contact relationship and establishing a vehicle dynamics model, the influence of worn typical rail profiles on the vehicle’s dynamic performance and carbody abnormal vibration is analyzed. Additionally, the effect of worn rail profiles on wheel wear is analyzed using a wear model.

Findings

The results showed that, compared to the standard rail profile, the three typical wear rail profiles show an increase in normal contact stress. The ride and safety indexes of the three rail profiles also increased compared with the CHN60 profile. The rail Profile 3 does not affect carbody vibration, while Profile 1 and Profile 2 can cause hunting vibrations of the carbody, with the main vibration frequencies around 7 Hz. The wheel wear depths under three typical rail profiles are 1.185 mm, 1.11 mm and 1.058 mm.

Originality/value

The effect of the measured typical rail profiles on the vehicle’s performance is analyzed, particularly in terms of abnormal vibrations and wheel wear. This analysis can provide guidance for the long-term maintenance of the rail system.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2023-0270/

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 95