Search results

1 – 10 of 165
Open Access
Article
Publication date: 14 January 2020

Antonio Armillotta

This paper aims to investigate the feasibility of adding macro-textures to triangle meshes for additive manufacturing (AM) focusing on possible time and quality issues in both…

Abstract

Purpose

This paper aims to investigate the feasibility of adding macro-textures to triangle meshes for additive manufacturing (AM) focusing on possible time and quality issues in both software processing and part fabrication.

Design/methodology/approach

A demonstrative software tool was developed to apply user-selected textures to existing meshes. The computational procedure is a three-dimensional extension of the solid texturing method used in computer graphics. The tool was tested for speed and quality of results, considering also the pre- and post-processing operations required. Some textured meshes were printed by different processes to test build speed and quality.

Findings

The tool can handle models with realistic complexity in acceptable computation times. Parts are built without difficulties or extra-costs achieving a good aesthetic yield of the texture.

Research limitations/implications

The tool cannot reproduce sample patterns but requires the development of a generation algorithm for different type of textures. Mesh processing operations may take a long time when very fine textures are added to large parts.

Practical implications

Direct texturing can help obtain parts with aesthetic or functional textures without the need for surface post-treatments, which can be especially difficult and expensive for plastic parts.

Originality/value

The proposed method improves the uniformity and consistency of textures compared to existing approaches, and can support future systematic studies on the detail resolution of AM processes.

Open Access
Article
Publication date: 18 January 2022

Srinimalan Balakrishnan Selvakumaran and Daniel Mark Hall

The purpose of this paper is to investigate the feasibility of an end-to-end simplified and automated reconstruction pipeline for digital building assets using the design science…

1491

Abstract

Purpose

The purpose of this paper is to investigate the feasibility of an end-to-end simplified and automated reconstruction pipeline for digital building assets using the design science research approach. Current methods to create digital assets by capturing the state of existing buildings can provide high accuracy but are time-consuming, expensive and difficult.

Design/methodology/approach

Using design science research, this research identifies the need for a crowdsourced and cloud-based approach to reconstruct digital building assets. The research then develops and tests a fully functional smartphone application prototype. The proposed end-to-end smartphone workflow begins with data capture and ends with user applications.

Findings

The resulting implementation can achieve a realistic three-dimensional (3D) model characterized by different typologies, minimal trade-off in accuracy and low processing costs. By crowdsourcing the images, the proposed approach can reduce costs for asset reconstruction by an estimated 93% compared to manual modeling and 80% compared to locally processed reconstruction algorithms.

Practical implications

The resulting implementation achieves “good enough” reconstruction of as-is 3D models with minimal tradeoffs in accuracy compared to automated approaches and 15× cost savings compared to a manual approach. Potential facility management use cases include the issue and information tracking, 3D mark-up and multi-model configurators.

Originality/value

Through user engagement, development, testing and validation, this work demonstrates the feasibility and impact of a novel crowdsourced and cloud-based approach for the reconstruction of digital building assets.

Details

Journal of Facilities Management , vol. 20 no. 3
Type: Research Article
ISSN: 1472-5967

Keywords

Open Access
Article
Publication date: 5 February 2024

Krištof Kovačič, Jurij Gregorc and Božidar Šarler

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Abstract

Purpose

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Design/methodology/approach

The physical model is posed in the mixture formulation and copes with the unsteady, incompressible, isothermal, Newtonian, low turbulent two-phase flow. The computational fluid dynamics numerical solution is based on the half-space finite volume discretisation. The geo-reconstruct volume-of-fluid scheme tracks the interphase boundary between the gas and the liquid. To ensure numerical stability in the transition regime and adequately account for turbulent behaviour, the k-ω shear stress transport turbulence model is used. The model is validated by comparison with the experimental measurements on a vertical, downward-positioned GDVN configuration. Three different combinations of air and water volumetric flow rates have been solved numerically in the range of Reynolds numbers for airflow 1,009–2,596 and water 61–133, respectively, at Weber numbers 1.2–6.2.

Findings

The half-space symmetry allows the numerical reconstruction of the dripping, jetting and indication of the whipping mode. The kinetic energy transfer from the gas to the liquid is analysed, and locations with locally increased gas kinetic energy are observed. The calculated jet shapes reasonably well match the experimentally obtained high-speed camera videos.

Practical implications

The model is used for the virtual studies of new GDVN nozzle designs and optimisation of their operation.

Originality/value

To the best of the authors’ knowledge, the developed model numerically reconstructs all three GDVN flow regimes for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 30 March 2023

Guilherme Duarte, Ana M.A. Neves and António Ramos Silva

The goal of this work is to create a computational finite element model to perform thermoelastic stress analysis (TSA) with the usage of a non-ideal load frequency, containing the…

Abstract

Purpose

The goal of this work is to create a computational finite element model to perform thermoelastic stress analysis (TSA) with the usage of a non-ideal load frequency, containing the effects of the material thermal properties.

Design/methodology/approach

Throughout this document, the methodology of the model is presented first, followed by the procedure and results. The last part is reserved to results, discussion and conclusions.

Findings

This work had the main goal to create a model to perform TSA with the usage of non-ideal loading frequencies, considering the materials’ thermal properties. Loading frequencies out of the ideal range were applied and the model showed capable of good results. The created model reproduced acceptably the TSA, with the desired conditions.

Originality/value

This work creates a model to perform TSA with the usage of non-ideal loading frequencies, considering the materials’ thermal properties.

Details

International Journal of Structural Integrity, vol. 14 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Open Access
Article
Publication date: 16 March 2022

Michael Leumüller, Karl Hollaus and Joachim Schöberl

This paper aims to consider a multiscale electromagnetic wave problem for a housing with a ventilation grill. Using the standard finite element method to discretise the apertures…

Abstract

Purpose

This paper aims to consider a multiscale electromagnetic wave problem for a housing with a ventilation grill. Using the standard finite element method to discretise the apertures leads to an unduly large number of unknowns. An efficient approach to simulate the multiple scales is introduced. The aim is to significantly reduce the computational costs.

Design/methodology/approach

A domain decomposition technique with upscaling is applied to cope with the different scales. The idea is to split the domain of computation into an exterior domain and multiple non-overlapping sub-domains. Each sub-domain represents a single aperture and uses the same finite element mesh. The identical mesh of the sub-domains is efficiently exploited by the hybrid discontinuous Galerkin method and a Schur complement which facilitates the transition from fine meshes in the sub-domains to a coarse mesh in the exterior domain. A coarse skeleton grid is used on the interface between the exterior domain and the individual sub-domains to avoid large dense blocks in the finite element discretisation matrix.

Findings

Applying a Schur complement to the identical discretisation of the sub-domains leads to a method that scales very well with respect to the number of apertures.

Originality/value

The error compared to the standard finite element method is negligible and the computational costs are significantly reduced.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 4 January 2021

Radosław Wajman

Crystallization is the process widely used for components separation and solids purification. The systems for crystallization process evaluation applied so far, involve numerous…

2490

Abstract

Purpose

Crystallization is the process widely used for components separation and solids purification. The systems for crystallization process evaluation applied so far, involve numerous non-invasive tomographic measurement techniques which suffers from some reported problems. The purpose of this paper is to show the abilities of three-dimensional Electrical Capacitance Tomography (3D ECT) in the context of non-invasive and non-intrusive visualization of crystallization processes. Multiple aspects and problems of ECT imaging, as well as the computer model design to work with the high relative permittivity liquids, have been pointed out.

Design/methodology/approach

To design the most efficient (from a mechanical and electrical point of view) 3D ECT sensor structure, the high-precise impedance meter was applied. The three types of sensor were designed, built, and tested. To meet the new concept requirements, the dedicated ECT device has been constructed.

Findings

It has been shown that the ECT technique can be applied to the diagnosis of crystallization. The crystals distribution can be identified using this technique. The achieved measurement resolution allows detecting the localization of crystals. The usage of stabilized electrodes improves the sensitivity of the sensor and provides the images better suitable for further analysis.

Originality/value

The dedicated 3D ECT sensor construction has been proposed to increase its sensitivity in the border area, where the crystals grow. Regarding this feature, some new algorithms for the potential field distribution and the sensitivity matrix calculation have been developed. The adaptation of the iterative 3D image reconstruction process has also been described.

Details

Sensor Review, vol. 41 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Content available
Article
Publication date: 14 April 2022

Ahmad Chihadeh and Michael Kaliske

This paper aims to introduce a method to couple truss finite elements to the material point method (MPM). It presents modeling reinforced material using MPM and describes how to…

Abstract

Purpose

This paper aims to introduce a method to couple truss finite elements to the material point method (MPM). It presents modeling reinforced material using MPM and describes how to consider the bond behavior between the reinforcement and the continuum.

Design/methodology/approach

The embedded approach is used for coupling reinforcement bars with continuum elements. This description is achieved by coupling continuum elements in the background mesh to the reinforcement bars, which are described using truss- finite elements. The coupling is implemented between the truss elements and the continuum elements in the background mesh through bond elements that allow for freely distributed truss elements independent of the continuum element discretization. The bond elements allow for modeling the bond behavior between the reinforcement and the continuum.

Findings

The paper introduces a novel method to include the reinforcement bars in the MPM applications. The reinforcement bars can be modeled without any constraints with a bond-slip constitutive model being considered.

Originality/value

As modeling of reinforced materials is required in a wide range of applications, a method to include the reinforcement into the MPM framework is required. The proposed approach allows for modeling reinforced material within MPM applications.

Details

Engineering Computations, vol. 39 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 24 October 2018

Samuel Evans, Eric Jones, Peter Fox and Chris Sutcliffe

This paper aims to introduce a novel method for the analysis of open cell porous components fabricated by laser-based powder bed metal additive manufacturing (AM) for the purpose…

1140

Abstract

Purpose

This paper aims to introduce a novel method for the analysis of open cell porous components fabricated by laser-based powder bed metal additive manufacturing (AM) for the purpose of quality control. This method uses photogrammetric analysis, the extraction of geometric information from an image through the use of algorithms. By applying this technique to porous AM components, a rapid, low-cost inspection of geometric properties such as material thickness and pore size is achieved. Such measurements take on greater importance, as the production of porous additive manufactured orthopaedic devices increases in number, causing other, slower and more expensive methods of analysis to become impractical.

Design/methodology/approach

Here the development of the photogrammetric method is discussed and compared to standard techniques including scanning electron microscopy, micro computed tomography scanning and the recently developed focus variation (FV) imaging. The system is also validated against test graticules and simple wire geometries of known size, prior to the more complex orthopaedic structures.

Findings

The photogrammetric method shows an ability to analyse the variability in build fidelity of AM porous structures for use in inspection purposes to compare component properties. While measured values for material thickness and pore size differed from those of other techniques, the new photogrammetric technique demonstrated a low deviation when repeating measurements, and was able to analyse components at a much faster rate and lower cost than the competing systems, with less requirement for specific expertise or training.

Originality/value

The advantages demonstrated by the image-based technique described indicate the system to be suitable for implementation as a means of in-line process control for quality and inspection applications, particularly for high-volume production where existing methods would be impractical.

Details

Rapid Prototyping Journal, vol. 24 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 2 November 2023

Yangyiwei Yang, Patrick Kühn, Mozhdeh Fathidoost and Bai-Xiang Xu

Confronting the unveiled sophisticated structural and physical characteristics of permanent magnets, notably the samarium–cobalt (Sm-Co) alloy, This work aims to introduce a…

Abstract

Purpose

Confronting the unveiled sophisticated structural and physical characteristics of permanent magnets, notably the samarium–cobalt (Sm-Co) alloy, This work aims to introduce a simulation scheme that can link physics-based micromagnetics on the nanostructures and magnetostatic homogenization on the mesoscale polycrystalline structures.

Design/methodology/approach

The simulation scheme is arranged in a multiscale fashion. The magnetization behaviors on the nanostructures examined with various orientations are surrogated as the micromagnetic-informed hysterons. The hysteresis behavior of the mesoscale polycrystalline structures with micromagnetic-informed hysterons is then evaluated by computational magnetostatic homogenization.

Findings

The micromagnetic-informed hysterons can emulate the magnetization reversal of the parameterized Sm-Co nanostructures as the local hysteresis behavior on the mesostructures. The simulation results of the mesoscale polycrystal demonstrate that the demagnetization process starts from the grain with the largest orientation angle (a) and then propagates to the surrounding grains.

Research limitations/implications

The presented scheme depicts the demand for integrating data-driven methods, as the parameters of the surrogate hysteron intrinsically depend on the nanostructure and its orientation. Further hysteron parameters that help the surrogate hysteron emulate the micromagnetic-simulated magnetization reversal should be examined.

Originality/value

This work provides a novel multiscale scheme for simulating the polycrystalline permanent magnets’ hysteresis while recapitulating the nanoscale mechanisms, such as the nucleation of domains, and domain wall migration and pinning. This scheme can be further extended to simulate the part-level hysteresis considering the mesoscale features.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 3 June 2022

Peter Gangl, Stefan Köthe, Christiane Mellak, Alessio Cesarano and Annette Mütze

This paper aims to deal with the design optimization of a synchronous reluctance machine to be used in an X-ray tube, where the goal is to maximize the torque while keeping low…

Abstract

Purpose

This paper aims to deal with the design optimization of a synchronous reluctance machine to be used in an X-ray tube, where the goal is to maximize the torque while keeping low the amount of material used, by means of gradient-based free-form shape optimization.

Design/methodology/approach

The presented approach is based on the mathematical concept of shape derivatives and allows to obtain new motor designs without the need to introduce a geometric parametrization. This paper presents an extension of a standard gradient-based free-form shape optimization algorithm to the case of multiple objective functions by determining updates, which represent a descent of all involved criteria. Moreover, this paper illustrates a way to obtain an approximate Pareto front.

Findings

The presented method allows to obtain optimal designs of arbitrary, non-parametric shape with very low computational cost. This paper validates the results by comparing them to a parametric geometry optimization in JMAG by means of a stochastic optimization algorithm. While the obtained designs are of similar shape, the computational time used by the gradient-based algorithm is in the order of minutes, compared to several hours taken by the stochastic optimization algorithm.

Originality/value

This paper applies the presented gradient-based multi-objective optimization algorithm in the context of free-form shape optimization using the mathematical concept of shape derivatives. The authors obtain a set of Pareto-optimal designs, each of which is a shape that is not represented by a fixed set of parameters. To the best of the authors’ knowledge, this approach to multi-objective free-form shape optimization is novel in the context of electric machines.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 165