Search results

21 – 30 of 728
Article
Publication date: 18 July 2018

Mohammad Abu Hasan Khondoker, Asad Asad and Dan Sameoto

This paper aims to target to print functionally gradient materials (FGM) devices made of immiscible polymers in multi-material fused deposition modelling (FDM) systems. The design…

Abstract

Purpose

This paper aims to target to print functionally gradient materials (FGM) devices made of immiscible polymers in multi-material fused deposition modelling (FDM) systems. The design is intended to improve adhesion of dissimilar thermoplastics without the need for chemical compatibilization so that filaments from many different sources can be used effectively. Therefore, there is a need to invent an alternative solution for printing multiple immiscible polymers in an FDM system with the desired adhesion.

Design/methodology/approach

In this study, the authors have developed a bi-extruder for FDM systems which can print two thermoplastics through a single nozzle with a static intermixer to enhance bonding between input materials. The system can also change the composition of extrudates continuously.

Findings

The uniqueness of this extruder is in its easy access to the internal channel so that a static intermixer can be inserted, enabling deposition of mechanically interlocked extrudates composed of two immiscible polymers. Without this intermixer, the bi-extruder extrudes with simple side-by-side co-extrusion having no mechanical interlocking. The bi-extruder was characterized by printing objects using pairs of materials including polylactic acid, acrylonitrile butadiene styrene and high impact polystyrene. Microscope images of the cross-sections of the extrudates confirm the ability of this bi-extruder to control the composition as desired. It was also found that the mechanically interlocked extrudates composed of two immiscible polymers substantially reduces adhesion failures within and between filaments.

Originality/value

In this study, the first-ever FDM extruder with a mechanical blending feature next to the nozzle has been designed and used to successfully print FGM objects with improved mechanical properties.

Details

Rapid Prototyping Journal, vol. 24 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 August 2021

Ruiliang Feng, Jingchao Jiang, Zhichao Sun, Atul Thakur and Xiangzhi Wei

The purpose of this paper is to report the design of a lightweight tree-shaped support structure for fused deposition modeling (FDM) three-dimensional (3D) printed models when the…

Abstract

Purpose

The purpose of this paper is to report the design of a lightweight tree-shaped support structure for fused deposition modeling (FDM) three-dimensional (3D) printed models when the printing path is considered as a constraint.

Design/methodology/approach

A hybrid of genetic algorithm (GA) and particle swarm optimization (PSO) is proposed to address the topology optimization of the tree-shaped support structures, where GA optimizes the topologies of the trees and PSO optimizes the geometry of a fixed tree-topology. Creatively, this study transforms each tree into an approximate binary tree such that GA can be applied to evolve its topology efficiently. Unlike FEM-based methods, the growth of tree branches is based on a large set of FDM 3D printing experiments.

Findings

The hybrid of GA and PSO is effective in reducing the volume of the tree supports. It is shown that the results of the proposed method lead to up to 46.71% material savings in comparison with the state-of-the-art approaches.

Research limitations/implications

The proposed approach requires a large number of printing experiments to determine the function of the yield length of a branch in terms of a set of critical parameters. For brevity, one can print a small set of tree branches (e.g. 30) on a single platform and evaluate the function, which can be used all the time after that. The steps of GA for topology optimization and those of PSO for geometry optimization are presented in detail.

Originality/value

The proposed approach is useful for the designers and manufacturers to save materials and printing time in fabricating complex models using the FDM technique. It can be adapted to the design of support structures for other additive manufacturing techniques such as Stereolithography and selective laser melting.

Details

Rapid Prototyping Journal, vol. 27 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 June 2020

Lai Jiang, Xiaobo Peng and Daniel Walczyk

This paper aims to summarize the up-to-date research performed on combinations of various biofibers and resin systems used in different three-dimensional (3D) printing…

Abstract

Purpose

This paper aims to summarize the up-to-date research performed on combinations of various biofibers and resin systems used in different three-dimensional (3D) printing technologies, including powder-based, material extrusion, solid-sheet and liquid-based systems. Detailed information about each process, including materials used and process design, are described, with the resultant products’ mechanical properties compared with those of 3D-printed parts produced from pure resin or different material combinations. In most processes introduced in this paper, biofibers are beneficial in improving the mechanical properties of 3D-printed parts and the biodegradability of the parts made using these green materials is also greatly improved. However, research on 3D printing of biofiber-reinforced composites is still far from complete, and there are still many further studies and research areas that could be explored in the future.

Design/methodology/approach

The paper starts with an overview of the current scenario of the composite manufacturing industry and then the problems of advanced composite materials are pointed out, followed by an introduction of biocomposites. The main body of the paper covers literature reviews of recently emerged 3D printing technologies that were applied to biofiber-reinforced composite materials. This part is classified into subsections based on the form of the starting materials used in the 3D printing process. A comprehensive conclusion is drawn at the end of the paper summarizing the findings by the authors.

Findings

Most of the biofiber-reinforced 3D-printed products exhibited improved mechanical properties than products printed using pure resin, indicating that biofibers are good replacements for synthetic ones. However, synthetic fibers are far from being completely replaced by biofibers due to several of their disadvantages including higher moisture absorbance, lower thermal stability and mechanical properties. Many studies are being performed to solve these problems, yet there are still some 3D printing technologies in which research concerning biofiber-reinforced composite parts is quite limited. This paper unveils potential research directions that would further develop 3D printing in a sustainable manner.

Originality/value

This paper is a summary of attempts to use biofibers as reinforcements together with different resin systems as the starting material for 3D printing processes, and most of the currently available 3D printing techniques are included herein. All of these attempts are solutions to some principal problems with current 3D printing processes such as the limit in the variety of materials and the poor mechanical performance of 3D printed parts. Various types of biofibers are involved in these studies. This paper unveils potential research directions that would further widen the use of biofibers in 3D printing in a sustainable manner.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 August 2019

Ognjan Luzanin, Dejan Movrin, Vassilis Stathopoulos, Pavlos Pandis, Tanja Radusin and Vera Guduric

This study aims to investigate the impact of layer thickness, extrusion temperature, extrusion speed and build plate temperature on the tensile strength, crystallinity achieved…

Abstract

Purpose

This study aims to investigate the impact of layer thickness, extrusion temperature, extrusion speed and build plate temperature on the tensile strength, crystallinity achieved during fabrication (herein, in-process crystallinity) and mesostructure of Poly(lactic acid) specimens. Both tensile strength and in-process crystallinity were optimized and verified as the function of processing parameters, and their relationship was thoroughly examined.

Design/methodology/approach

The four key technological parameters were systematically varied as factors on three levels, using the statistically designed experiment. Surface response methodology was used to optimize tensile strength and crystallinity for the given ranges of input factors. Optimized factor settings were used in a set of confirmation runs, where the result of optimization was experimentally confirmed. Material characterization was performed using differential scanning calorimetry and X-ray diffraction analysis, while the effect of processing parameters on mesostructure was examined by scanning electron microscopy.

Findings

Layer thickness and its quadratic effect are dominant contributors to tensile strength. Significant interaction between layer thickness and extrusion speed implies that these parameters should always be varied simultaneously within designed experiment to obtain adequate process model. As regards, the in-process crystallinity, extrusion speed is part of two significant interactions with plate temperature and layer thickness, respectively. Quality of mesostructure is vital contributor to tensile strength during FDM process, while the in-process crystallinity exhibited no impact, remaining below the 20 per cent margin regardless of process parameter settings.

Originality/value

According to available literature, there have been no previously published investigations which studied the effect of process parameters on tensile strength, mesostructure and in-process crystallinity through systematic variation of four critical processing parameters.

Details

Rapid Prototyping Journal, vol. 25 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 27 February 2021

Martin Krčma, David Škaroupka, Petr Vosynek, Tomáš Zikmund, Jozef Kaiser and David Palousek

This paper aims to focus on the evaluation of a polymer concrete as a three-dimensional (3D) printing material. An associated company has developed plastic concrete made from…

556

Abstract

Purpose

This paper aims to focus on the evaluation of a polymer concrete as a three-dimensional (3D) printing material. An associated company has developed plastic concrete made from reused unrecyclable plastic waste. Its intended use is as a construction material.

Design/methodology/approach

The concrete mix, called PolyBet, composed of polypropylene and glass sand, is printed by the fused deposition modelling process. The process of material and parameter selection is described. The mechanical properties of the filled material were compared to its cast state. Samples were made from castings and two different orientations of 3D-printed parts. Three-point flex tests were carried out, and the area of the break was examined. Computed tomography of the samples was carried out.

Findings

The influence of the 3D printing process on the material was evaluated. The mechanical performance of the longitudinal samples was close to the cast state. There was a difference in the failure mode between the states, with cast parts exhibiting a tougher behaviour, with fractures propagating in a stair-like manner. The 3D-printed samples exhibited high degrees of porosity.

Originality/value

The results suggest that the novel material is a good fit for 3D printing, with little to no degradation caused by the process. Layer adhesion was shown to be excellent, with negligible effect on the finished part for the longitudinal orientation. That means, if large-scale testing of buildability is successful, the material is a good fit for additive manufacturing of building components and other large-scale structures.

Details

Rapid Prototyping Journal, vol. 27 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 May 2021

Shijie Jiang, Mingyu Sun, Yang Zhan, Hui Li and Wei Sun

The purpose of this study is to set up a dynamic model of material extrusion (ME) additive manufacturing plates for the prediction of their dynamic behavior (i.e. dynamic inherent…

Abstract

Purpose

The purpose of this study is to set up a dynamic model of material extrusion (ME) additive manufacturing plates for the prediction of their dynamic behavior (i.e. dynamic inherent characteristic, resonant response and damping) and also carry out its experimental validation and sensitivity analysis.

Design/methodology/approach

Based on the classical laminated plate theory, a dynamic model is established using the orthogonal polynomials method, taking into account the effect of lamination and orthogonal anisotropy. The dynamic inherent characteristics of the ME plate are worked out by Ritz method. The frequency-domain dynamic equations are then derived to solve the plates’ resonant responses, with which the damping ratio is figured out according to the half-power bandwidth method. Subsequently, a series of experimental tests are performed on the ME samples to obtain the measured data.

Findings

It is shown that the predictions and measurements in terms of dynamic behavior are in good agreement, validating the accuracy of the developed model. In addition, sensitivity analysis shows that increasing the elastic modulus or Poisson’s ratio will increase the corresponding natural frequency of the ME plate but decrease the resonant response. When the density is increased, both the natural frequency and resonant response will be decreased.

Research limitations/implications

Future research can be focused on using the proposed model to investigate the effect of processing parameters on the ME parts’ dynamic behavior.

Practical implications

This study shows theoretical basis and technical insight into improving the forming quality and reliability of the ME parts.

Originality/value

A novel reliable dynamic model is set up to provide theoretical basis and principle to reveal the physical phenomena and mechanism of ME parts.

Details

Rapid Prototyping Journal, vol. 27 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 April 2017

Yongze Yu, Fujun Liu and Jing Liu

This paper aims to propose a method that can directly print low-melting-point alloy In61Bi26Sn9Ga4 into a variety of macroscopic 3D structures at room temperature via adhesion…

Abstract

Purpose

This paper aims to propose a method that can directly print low-melting-point alloy In61Bi26Sn9Ga4 into a variety of macroscopic 3D structures at room temperature via adhesion mechanism.

Design/methodology/approach

In the first section, the principle of the direct printing system is described. As process parameters and material properties have both geometric and physical significance to printing, the approach the authors take is to study the relationships between key parameters and ultimate printed dimension. The surface tension of the fusible alloy is measured under different temperature ranges.

Findings

The interaction between the initial standoff distance and the geometry of the first layer is critically important for the adhesion of the liquid metal to the substrate and metal deposition. The characterization of the layer stacking in the direct printing process, stability ranges of the layer thickness and printing speed are also demonstrated. The direct printing system is suitable for making 3D structures with low-melting-point alloy under the summarized range of printing conditions.

Social implications

This study may arouse big public attention among society.

Originality/value

This study shows possibilities of manufacturing macroscopic 3D metal objects by continuously depositing molten alloy with low viscosity and high surface tension around room temperature. This study provides a supplement to realize compound printing with metal and nonmetal materials together for building terminal functional devices in a low cost and efficient way.

Details

Rapid Prototyping Journal, vol. 23 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 November 2022

Ruiliang Feng, Jingchao Jiang, Atul Thakur and Xiangzhi Wei

Two-level support with Level 1 consisting of a set of beams and Level 2 consisting of a tree-like structure is an efficient support structure for extrusion-based additive

156

Abstract

Purpose

Two-level support with Level 1 consisting of a set of beams and Level 2 consisting of a tree-like structure is an efficient support structure for extrusion-based additive manufacturing (EBAM). However, the literature for finding a slim two-level support is rare. The purpose of this paper is to design a lightweight two-level support structure for EBAM.

Design/methodology/approach

To efficiently solve the problem, the lightweight design problem is split into two subproblems: finding a slim Level 1 support and a slim Level 2 support. To solve these two subproblems, this paper develops three efficient metaheuristic algorithms, i.e. genetic algorithm (GA), genetic programming (GP) and particle swarm optimization (PSO). They are problem-independent and are powerful in global search. For the first subproblem, considering the path direction is a critical factor influencing the layout of Level 1 support, this paper solves it by splitting the overhang region into a set of subregions, and determining the path direction (vertical or horizontal) in each subregion using GA. For the second subproblem, a hybrid of two metaheuristic algorithms is proposed: the GP manipulates the topologies of the tree support, while the PSO optimizes the position of nodes and the diameter of tree branches. In particular, each chromosome is encoded as a single virtual tree for GP to make it easy to manipulate Crossover and Mutation. Furthermore, a local strategy of geometric search is designed to help the hybrid algorithm reach a better result.

Findings

Simulation results show that the proposed method is preferred over the existing method: it saves the materials of the two-level support up to 26.34%, the materials of the Level 1 support up to 6.62% and the materials of the Level 2 support up to 37.93%. The proposed local strategy of geometric search can further improve the hybrid algorithm, saving up to 17.88% of Level 2 support materials.

Research limitations/implications

The proposed approach for sliming Level 1 support requires the overhanging region to be a rectilinear polygon and the path direction in a subregion to be vertical or horizontal. This limitation limits the further material savings of the Level 1 support. In future research, the proposed approach can be extended to handle an arbitrary overhang region, each with several choices of path directions.

Practical implications

The details of how to integrate the proposed algorithm into the open-source program CuraEngine 4.13.0 is presented. This is helpful for the designers and manufacturers to practice on their own 3D printers.

Originality/value

The path planning of the overhang is a critical factor influencing the distribution of supporting points and will thus influence the shape of the support structure. Different from existing approaches that use single path directions, the proposed method optimizes the volume of the support structure by planning hybrid paths of the overhangs.

Details

Rapid Prototyping Journal, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 June 2022

Rishi Parvanda and Prateek Kala

Fused deposition modelling (FDM) has gained popularity owing to its capability of producing complex and customized profiles at relatively low cost and in shorter periods. The…

Abstract

Purpose

Fused deposition modelling (FDM) has gained popularity owing to its capability of producing complex and customized profiles at relatively low cost and in shorter periods. The study aims to extend the use of FDM printers for 3D printing of low melting point alloy (LMPA), which has applications in the electronics industry, rapid tooling, biomedical, etc.

Design/methodology/approach

Solder is the LMPA with alloy’s melting temperature (around 200°C) lower than the parent metals. The most common composition of the solder, which is widely used, is tin and lead. However, lead is a hazardous material having environmental and health deteriorating effects. Therefore, lead-free Sn89Bi10Cu non-eutectic alloy in the form of filament was used. The step-by-step method has been used to identify the process window for temperature, print speed, filament length (E) and layer height. The existing FDM printer was customized for the present work.

Findings

Analysis of infrared images has been done to understand discontinuity at a certain range of process parameters. The effect of printing parameters on inter-bonding, width and thickness of the layers has also been studied. The microstructure of the parent material and deposited bead has been observed. Conclusions were drawn out based on the results, and the scope for the future has been pointed out.

Originality/value

The experiments resulted in the process window identification of print speed, extrusion temperature, filament length and layer height of Sn89Bi10Cu which is not done previously.

Details

Rapid Prototyping Journal, vol. 28 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 23 September 2022

Solomon O. Obadimu and Kyriakos I. Kourousis

The material extrusion (ME) process induces variations in the final part’s microscopic and macroscopic structural characteristics. This viewpoint article aims to uncover the…

1289

Abstract

Purpose

The material extrusion (ME) process induces variations in the final part’s microscopic and macroscopic structural characteristics. This viewpoint article aims to uncover the relation between ME fabrication parameters and the microstructural and mesostructural characteristics of the ME BASF Ultrafuse Steel 316L metal parts. These characteristics can affect the structural integrity of the produced parts and components used in various engineering applications.

Design/methodology/approach

Recent studies on the ME BASF Ultrafuse Steel 316L are reviewed, with a focus on those which report microstructural and mesostructural characteristics that may affect structural integrity.

Findings

A relationship between ME fabrication parameters and subsequent microstructural and mesostructural characteristics is discussed. Common microstructural and mesostructural/macrostructural defects are also highlighted and discussed.

Originality/value

This viewpoint article attempts to bridge the existing gap in the literature, highlighting the influence of ME fabrication parameters on Steel 316L parts fabricated via this additive manufacturing method. Moreover, this article identifies and discusses important considerations for the purposes of selecting and optimising the structural integrity of ME-fabricated Steel 316L parts.

Details

International Journal of Structural Integrity, vol. 14 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

21 – 30 of 728