Search results

1 – 10 of 43
Article
Publication date: 26 March 2024

U.S. Mahabaleshwar, Mahesh Rudraiah, Huang Huang and Bengt Ake Sunden

The purpose of this study is to analyze the impact of inclined magnetohydrodynamics (MHD) and thermal radiation on the flow of a ternary micropolar nanofluid on a sheet that is…

Abstract

Purpose

The purpose of this study is to analyze the impact of inclined magnetohydrodynamics (MHD) and thermal radiation on the flow of a ternary micropolar nanofluid on a sheet that is expanding and contracting while applying mass transpiration and velocity slip conditions to the flow. The nanofluid, which is composed of Au, Ag and Cu nanoparticles dispersed in water as the base fluid, possesses critical properties for increasing the heat transfer rate and is frequently used in manufacturing and industrial establishments.

Design/methodology/approach

The set of governing nonlinear partial differential equations is transformed into a set of nonlinear ordinary differential equations. The outcome of this differential equation is solved and obtained the closed-form solution and energy equation in the form of hypergeometric functions.

Findings

The velocity, micro-rotation and temperature field are investigated versus a parametric variation. The physical domains of mass suction or injection and micropolar characteristics play an important role in specifying the presence, singleness and multiplanes of exact solutions. In addition, many nondimensional characteristics of the profiles of temperature, angular velocity and velocity profiles are graphically shown with substantial consequences. Furthermore, adding nanoparticles increases the heat transfer rate of the fluid used in manufacturing and industrial establishments. The current findings may be used for better oil recovery procedures, smart materials such as magnetorheological fluids, targeted medicine administration and increased heat transmission. Concerning environmental cleanup, nanomaterial fabrication and biomedical devices, demonstrate their potential influence in a variety of disciplines.

Originality/value

The originality of this paper is to analyze the impact of inclined MHD at an angle with the ternary nanofluid on a micropolar fluid over an expanding and contracting sheet with thermal radiation effect.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 February 2024

Muhammad Faisal, F. Mabood, I.A. Badruddin, Muhammad Aiyaz and Faisal Mehmood Butt

Nonlinear mixed-convective entropy optimized the flow of hyperbolic-tangent nanofluid (HTN) with magnetohydrodynamics (MHD) process is considered over a vertical slendering…

17

Abstract

Purpose

Nonlinear mixed-convective entropy optimized the flow of hyperbolic-tangent nanofluid (HTN) with magnetohydrodynamics (MHD) process is considered over a vertical slendering surface. The impression of activation energy is incorporated in the modeling with the significance of nonlinear radiation, dissipative-function, heat generation/consumption connection and Joule heating. Research in this area has practical applications in the design of efficient heat exchangers, thermal management systems or nanomaterial-based devices.

Design/methodology/approach

Suitable set of variables is introduced to transform the PDEs (Partial differential equations) system into required ODEs (Ordinary differential equations) system. The transformed ODEs system is then solved numerically via finite difference method. Graphical artworks are made to predict the control of applicable transport parameters on surface entropy, Bejan number, Sherwood number, skin-friction, Nusselt number, temperature, velocity and concentration fields.

Findings

It is noticed from present numerical examination that Bejan number aggravates for improved estimations of concentration-difference parameter a_2, Eckert number E_c, thermal ratio parameter ?_w and radiation parameter R_d, whereas surface entropy condenses for flow performance index n, temperature-difference parameter a_1, thermodiffusion parameter N_t and mixed convection parameter ?. Sherwood number is enriched with the amplification of pedesis-motion parameter N_b, while opposite development is perceived for thermodiffusion parameter. Lastly, outcomes are matched with formerly published data to authenticate the present numerical investigation.

Originality/value

To the best of the authors' knowledge, no investigation has been reported yet that explains the entropic behavior with activation energy in the flowing of hyperbolic-tangent mixed-convective nanomaterial due to a vertical slendering surface.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 13 September 2023

Nurul Amira Zainal, Najiyah Safwa Khashi'ie, Iskandar Waini, Abdul Rahman Mohd Kasim, Roslinda Nazar and Ioan Pop

The evaluation of high thermal efficiency has actively highlighted the unique behaviour of hybrid nanofluid. Thus, the purpose of this paper is to emphasize the hybrid nanofluid’s…

Abstract

Purpose

The evaluation of high thermal efficiency has actively highlighted the unique behaviour of hybrid nanofluid. Thus, the purpose of this paper is to emphasize the hybrid nanofluid’s stagnation point in three-dimensional flow with magnetic field.

Design/methodology/approach

The defined ordinary differential equations systems are addressed using the bvp4c solver.

Findings

The results indicate that using dual solutions is possible as long as the physical parameters remain within their specified ranges. Hybrid nanofluid flow has been recognised for its superior heat transfer capabilities in comparison to both viscous flow and nanofluid flow. Furthermore, it has been demonstrated in the current study that augmenting the volume concentration of nanoparticles leads to a corresponding enhancement in the rate of heat transfer. When the velocity gradients ratio is augmented, there is a corresponding reduction in the thermal performance. The separation value grows as the magnetic parameter rises, which signifies the expansion of the boundary layer.

Originality/value

The originality of the paper highlights the general mathematical hybrid model of the three-dimensional problem with the magnetohydrodynamics (MHD) effect in the stagnation point flow. The comprehensive examination of the suggested model has not yet been thoroughly addressed in prior research.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 April 2024

Cédric Gervais Njingang Ketchate, Oluwole Daniel Makinde, Pascalin Tiam Kapen and Didier Fokwa

This paper aims to investigate the hydrodynamic instability properties of a mixed convection flow of nanofluid in a porous channel.

Abstract

Purpose

This paper aims to investigate the hydrodynamic instability properties of a mixed convection flow of nanofluid in a porous channel.

Design/methodology/approach

The treated single-phase nanofluid is a suspension consisting of water as the working fluid and alumina as a nanoparticle. The anisotropy of the porous medium and the effects of the inclination of the magnetic field are highlighted. The effects of viscous dissipation and thermal radiation are incorporated into the energy equation. The eigenvalue equation system resulting from the stability analysis is processed numerically by the spectral collocation method.

Findings

Analysis of the results in terms of growth rate reveals that increasing the volume fraction of nanoparticles increases the critical Reynolds number. Parameters such as the mechanical anisotropy parameter and Richardson number have a destabilizing effect. The Hartmann number, permeability parameter, magnetic field inclination, Prandtl number, wave number and thermal radiation parameter showed a stabilizing effect. The Eckert number has a negligible effect on the growth rate of the disturbances.

Originality/value

Linear stability analysis of Magnetohydrodynamics (MHD) mixed convection flow of a radiating nanofluid in porous channel in presence of viscous dissipation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 April 2024

Nirmal K. Manna, Abhinav Saha, Nirmalendu Biswas and Koushik Ghosh

This paper aims to investigate the thermal performance of equivalent square and circular thermal systems and compare the heat transport and irreversibility of magnetohydrodynamic…

Abstract

Purpose

This paper aims to investigate the thermal performance of equivalent square and circular thermal systems and compare the heat transport and irreversibility of magnetohydrodynamic (MHD) nanofluid flow within these systems.

Design/methodology/approach

The research uses a constraint-based approach to analyze the impact of geometric shapes on heat transfer and irreversibility. Two equivalent systems, a square cavity and a circular cavity, are examined, considering identical heating/cooling lengths and fluid flow volume. The analysis includes parameters such as magnetic field strength, nanoparticle concentration and accompanying irreversibility.

Findings

This study reveals that circular geometry outperforms square geometry in terms of heat flow, fluid flow and heat transfer. The equivalent circular thermal system is more efficient, with heat transfer enhancements of approximately 17.7%. The corresponding irreversibility production rate is also higher, which is up to 17.6%. The total irreversibility production increases with Ra and decreases with a rise in Ha. However, the effect of magnetic field orientation (γ) on total EG is minor.

Research limitations/implications

Further research can explore additional geometric shapes, orientations and boundary conditions to expand the understanding of thermal performance in different configurations. Experimental validation can also complement the numerical analysis presented in this study.

Originality/value

This research introduces a constraint-based approach for evaluating heat transport and irreversibility in MHD nanofluid flow within square and circular thermal systems. The comparison of equivalent geometries and the consideration of constraint-based analysis contribute to the originality and value of this work. The findings provide insights for designing optimal thermal systems and advancing MHD nanofluid flow control mechanisms, offering potential for improved efficiency in various applications.

Graphical Abstract

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 September 2023

Shafia Rana, M. Nawaz and Sayer Obaid Alharbi

The purpose of this study is to analyze the transportation of heat and mass in three-dimensional (3D) shear rate-dependent viscous fluid. Thermal enhancement plays a significant…

130

Abstract

Purpose

The purpose of this study is to analyze the transportation of heat and mass in three-dimensional (3D) shear rate-dependent viscous fluid. Thermal enhancement plays a significant role in industrial and engineering applications. For this, the authors dispersed trihybrid nanoparticles into the fluid to enhance the working fluid’s thermal enhancement.

Design/methodology/approach

The finite element method is a numerical scheme and is powerful in achieving convergent and grid-independent solutions compared with other numerical techniques. This method was initially assigned to structural problems. However, it is equally successful for computational fluid dynamics problems.

Findings

Wall shear stress has shown an increasing behavior as the intensity of the magnetic field is increased. Simulations have predicted that Ohmic heat in the case of trihybrid nanofluid (MoS2–Al2O3–Cu/C2H6O2) has the greatest value in comparison with mono and hybrid nanofluids. The most significant influence of chemical reaction on the concentration in tri-nanofluid is noted. This observation is pointed out for both types of chemical reaction (destructive or generative) parameters.

Originality/value

Through a literature survey, the authors analyzed that no one has yet to work on a 3D magnetohydrodynamics Carreau–Yasuda trihybrid nanofluid over a stretched sheet for improving heat and mass transfer over hybrid nanofluids. Herein, molybdenum disulfide (MoS2), aluminum oxide (Al2O3) and copper (Cu) nanoparticles are mixed in ethylene glycol (C2H6O2) to study the thermal enhancement and mass transport of their corresponding resultant mono (Cu/C2H6O2), hybrid (Al2O3–Cu/C2H6O2) and trihybrid (MoS2–Al2O3–Cu/C2H6O2) nanofluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 January 2024

Md Motiur Rahaman, Nirmalendu Biswas, Apurba Kumar Santra and Nirmal K. Manna

This study aims to delve into the coupled mixed convective heat transport process within a grooved channel cavity using CuO-water nanofluid and an inclined magnetic field. The…

Abstract

Purpose

This study aims to delve into the coupled mixed convective heat transport process within a grooved channel cavity using CuO-water nanofluid and an inclined magnetic field. The cavity undergoes isothermal heating from the bottom, with variations in the positions of heated walls across the grooved channel. The aim is to assess the impact of heater positions on thermal performance and identify the most effective configuration.

Design/methodology/approach

Numerical solutions to the evolved transport equations are obtained using a finite volume method-based indigenous solver. The dimensionless parameters of Reynolds number (1 ≤ Re ≤ 500), Richardson number (0.1 ≤ Ri ≤ 100), Hartmann number (0 ≤ Ha ≤ 70) and magnetic field inclination angle (0° ≤ γ ≤ 180°) are considered. The solved variables generate both local and global variables after discretization using the semi-implicit method for pressure linked equations algorithm on nonuniform grids.

Findings

The study reveals that optimal heat transfer occurs when the heater is positioned at the right corner of the grooved cavity. Heat transfer augmentation ranges from 0.5% to 168.53% for Re = 50 to 300 compared to the bottom-heated case. The magnetic field’s orientation significantly influences the average heat transfer, initially rising and then declining with increasing inclination angle. Overall, this analysis underscores the effectiveness of heater positions in achieving superior thermal performance in a grooved channel cavity.

Research limitations/implications

This concept can be extended to explore enhanced thermal performance under various thermal boundary conditions, considering wall curvature effects, different geometry orientations and the presence of porous structures, either numerically or experimentally.

Practical implications

The findings are applicable across diverse fields, including biomedical systems, heat exchanging devices, electronic cooling systems, food processing, drying processes, crystallization, mixing processes and beyond.

Originality/value

This work provides a novel exploration of CuO-water nanofluid flow in mixed convection within a grooved channel cavity under the influence of an inclined magnetic field. The influence of different heater positions on thermomagnetic convection in such a cavity has not been extensively investigated before, contributing to the originality and value of this research.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 15 January 2024

Nirmalendu Biswas, Deep Chatterjee, Sandip Sarkar and Nirmal K. Manna

This study aims to investigate the influence of wall curvature in a semicircular thermal annular system on magneto-nanofluidic flow, heat transfer and entropy generation. The…

Abstract

Purpose

This study aims to investigate the influence of wall curvature in a semicircular thermal annular system on magneto-nanofluidic flow, heat transfer and entropy generation. The analysis is conducted under constant cooling surface and fluid volume constraints.

Design/methodology/approach

The mathematical equations describing the thermo-fluid flow in the semicircular system are solved using the finite element technique. Four different heating wall configurations are considered, varying the undulation numbers of the heated wall. Parametric variations of bottom wall undulation (f), buoyancy force characterized by the Rayleigh number (Ra), magnetic field strength represented by the Hartmann number (Ha) and inclination of the magnetic field (γ) on the overall thermal performance are studied extensively.

Findings

This study reveals that the fluid circulation strength is maximum in the case of a flat bottom wall. The analysis shows that the bottom wall contour and other control parameters significantly influence fluid flow, entropy production and heat transfer. The modified heated wall with a single undulation exhibits the highest entropy production and thermal convection, leading to a heat transfer enhancement of up to 21.85% compared to a flat bottom. The magnetic field intensity and orientation have a significant effect on heat transfer and irreversibility production.

Research limitations/implications

Further research can explore a wider range of parameter values, alternative heating wall profiles and boundary conditions to expand the understanding of magneto-nanofluidic flow in semicircular thermal systems.

Originality/value

This study introduces a constraint-based analysis of magneto-nanofluidic thermal behavior in a complex semicircular thermal system, providing insights into the impact of wall curvature on heat transfer performance. The findings contribute to the design and optimization of thermal systems in various applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 5 September 2023

Ali Akbar Izadi and Hamed Rasam

Efficient thermal management of central processing unit (CPU) cooling systems is vital in the context of advancing information technology and the demand for enhanced data…

Abstract

Purpose

Efficient thermal management of central processing unit (CPU) cooling systems is vital in the context of advancing information technology and the demand for enhanced data processing speeds. This study aims to explore the thermal performance of a CPU cooling setup using a cylindrical porous metal foam heat sink.

Design/methodology/approach

Nanofluid flow through the metal foam is simulated using the Darcy–Brinkman–Forschheimer equation, accounting for magnetic field effects. The temperature distribution is modeled through the local thermal equilibrium equation, considering viscous dissipation. The problem’s governing partial differential equations are solved using the similarity method. The CPU’s hot surface serves as a solid wall, with nanofluid entering the heat sink as an impinging jet. Verification of the numerical results involves comparison with existing research, demonstrating strong agreement across numerical, analytical and experimental findings. Ansys Fluent® software is used to assess temperature, velocity and streamlines, yielding satisfactory results from an engineering standpoint.

Findings

Investigating critical parameters such as Darcy number (10−4DaD ≤ 10−2), aspect ratio (0.5 ≤ H/D ≤ 1.5), Reynolds number (5 ≤ ReD,bf ≤ 3500), Eckert number (0 ≤ ECbf ≤ 0.1) , porosity (0.85 ≤ ε ≤ 0.95), Hartmann number (0 ≤ HaD,bf ≤ 300) and the volume fraction of nanofluid (0 ≤ φ ≤ 0.1) reveals their impact on fluid flow and heat sink performance. Notably, Nusselt number will reduce 45%, rise 19.2%, decrease 14.1%, and decrease 0.15% for Reynolds numbers of 600, with rising porosity from 0.85 to 0.95, Darcy numbers from 10−4 to 10−2, Eckert numbers from 0 to 0.1, and Hartman numbers from 0 to 300.

Originality/value

Despite notable progress in studying thermal management in CPU cooling systems using porous media and nanofluids, there are still significant gaps in the existing literature. First, few studies have considered the Darcy–Brinkman–Forchheimer equation, which accounts for non-Darcy effects and the flow and geometric interactions between coolant and porous medium. The influence of viscous dissipation on heat transfer in this specific geometry has also been largely overlooked. Additionally, while nanofluids and impinging jets have demonstrated potential in enhancing thermal performance, their utilization within porous media remains underexplored. Furthermore, the unique thermal and structural characteristics of porous media, along with the incorporation of a magnetic field, have not been fully investigated in this particular configuration. Consequently, this study aims to address these literature gaps and introduce novel advancements in analytical modeling, non-Darcy flow, viscous dissipation, nanofluid utilization, impinging jets, porous media characteristics and the impact of a magnetic field. These contributions hold promising prospects for improving CPU cooling system thermal management and have broader implications across various applications in the field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 March 2024

Emrehan Gürsoy, Hayati Kadir Pazarlioğlu, Mehmet Gürdal, Engin Gedik, Kamil Arslan and Abdullah Dağdeviren

The purpose of this study is to analyse the magnetic field effect on Fe3O4/H2O Ferrofluid flowing in a sudden expansion tube, which has specific behaviour in terms of rheology…

Abstract

Purpose

The purpose of this study is to analyse the magnetic field effect on Fe3O4/H2O Ferrofluid flowing in a sudden expansion tube, which has specific behaviour in terms of rheology, with convex dimple fins. Because the investigation of flow separation is a prominent application in performance, the effect of magnetic field and convex dimple on the thermo-hydraulic performance of sudden expansion tube are examined, in detail.

Design/methodology/approach

During the solution of the boundary conditions of the sudden expansion tube, finite volume method was used. Analyses have been conducted considering the single-phase solution, steady-state, incompressible fluid and no-slip condition of the wall under forced convection conditions. In the analyses, it has been assumed that the flow was developing thermally and has been fully developed hydrodynamically.

Findings

The present study focuses on exploring the influence of the magnetic field, nanofluid concentration and convex dimple fins on the thermo-hydraulic performance of sudden expansion tube. The results indicate that the strength of the magnetic field, nanofluid concentration and convex dimple fins have a positive effect on the convective heat transfer in the system.

Originality/value

The authors conducted numerical studies, determining through a literature search that no one had yet investigated enhancing heat transfer on a sudden expansion tube using combinations of magnetic fields, nanofluids and convex dimple fins. The results of the numerical analyses provide valuable information about the improvement of heat transfer and system performance in electronic device cooling and heat exchangers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 43