Search results

1 – 10 of over 2000
Article
Publication date: 12 June 2018

Seyedeh Elahe Adel Rastkhiz, Ali Mobini Dehkordi, Jahangir Yadollahi Farsi and Adel Azar

In order to answer which opportunities are better to pursue, the purpose of this paper is to propose and empirically test a decision-making model for evaluating and selecting…

1554

Abstract

Purpose

In order to answer which opportunities are better to pursue, the purpose of this paper is to propose and empirically test a decision-making model for evaluating and selecting entrepreneurial opportunities.

Design/methodology/approach

First, the authors identified common evaluation criteria through a systematic review of 45 high quality articles published in top entrepreneurship and management journals between 2000 and 2017. Second, fuzzy screening technique has been employed to offer the decision-making model. Third, the authors used data of six evaluations provided by five experts at a medium-sized biotech firm to test the model.

Findings

The study shows that common decision criteria for evaluating entrepreneurial opportunities fall into seven categories. According to these criteria and using fuzzy screening technique, a multi-expert multi-criteria decision-making (MEMCDM) model has been suggested for evaluating and selecting opportunities.

Practical implications

This model can be served in situations in which decision makers should select a small number of opportunities among the larger set with regard to opportunity profile and minimal information. More opportunities and more decision makers can be included in the model. When the number of opportunities and decision makers are high, it is possible to use programming for fast, accurate and easy calculation.

Originality/value

This study is the first systematic review of opportunity evaluation criteria. It is also the first considering opportunity evaluation as a multi-expert decision-making process.

Details

Journal of Small Business and Enterprise Development, vol. 26 no. 1
Type: Research Article
ISSN: 1462-6004

Keywords

Book part
Publication date: 5 October 2018

Nima Gerami Seresht, Rodolfo Lourenzutti, Ahmad Salah and Aminah Robinson Fayek

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and…

Abstract

Due to the increasing size and complexity of construction projects, construction engineering and management involves the coordination of many complex and dynamic processes and relies on the analysis of uncertain, imprecise and incomplete information, including subjective and linguistically expressed information. Various modelling and computing techniques have been used by construction researchers and applied to practical construction problems in order to overcome these challenges, including fuzzy hybrid techniques. Fuzzy hybrid techniques combine the human-like reasoning capabilities of fuzzy logic with the capabilities of other techniques, such as optimization, machine learning, multi-criteria decision-making (MCDM) and simulation, to capitalise on their strengths and overcome their limitations. Based on a review of construction literature, this chapter identifies the most common types of fuzzy hybrid techniques applied to construction problems and reviews selected papers in each category of fuzzy hybrid technique to illustrate their capabilities for addressing construction challenges. Finally, this chapter discusses areas for future development of fuzzy hybrid techniques that will increase their capabilities for solving construction-related problems. The contributions of this chapter are threefold: (1) the limitations of some standard techniques for solving construction problems are discussed, as are the ways that fuzzy methods have been hybridized with these techniques in order to address their limitations; (2) a review of existing applications of fuzzy hybrid techniques in construction is provided in order to illustrate the capabilities of these techniques for solving a variety of construction problems and (3) potential improvements in each category of fuzzy hybrid technique in construction are provided, as areas for future research.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Open Access
Article
Publication date: 28 February 2023

Ahmad Hariri, Pedro Domingues and Paulo Sampaio

This paper aims to classify journal papers in the context of hybrid quality function deployment QFD and multi-criteria decision-making (MCDM) methods published during 2004–2021.

2592

Abstract

Purpose

This paper aims to classify journal papers in the context of hybrid quality function deployment QFD and multi-criteria decision-making (MCDM) methods published during 2004–2021.

Design/methodology/approach

A conceptual classification scheme is presented to analyze the hybrid QFD-MCDM methods. Then some recommendations are given to introduce directions for future research.

Findings

The results show that among all related areas, the manufacturing application has the most frequency of published papers regarding hybrid QFD-MCDM methods. Moreover, using uncertainty to establish a hybrid QFD-MCDM the relevant papers have been considered during the time interval 2004–2021.

Originality/value

There are various shortcomings in conventional QFD which limit its efficiency and potential applications. Since 2004, when MCDM methods were frequently adopted in the quality management context, increasing attention has been drawn from both practical and academic perspectives. Recently, the integration of MCDM techniques into the QFD model has played an important role in designing new products and services, supplier selection, green manufacturing systems and sustainability topics. Hence, this survey reviewed hybrid QFD-MCDM methods during 2004–2021.

Details

International Journal of Quality & Reliability Management, vol. 40 no. 10
Type: Research Article
ISSN: 0265-671X

Keywords

Content available
Book part
Publication date: 5 October 2018

Abstract

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Article
Publication date: 17 December 2021

Sudipta Ghosh, Madhab Chandra Mandal and Amitava Ray

Supplier selection (SS) is one of the prime competencies in a sourcing decision. Taking into account the key role played by suppliers in facilitating the implementation of green…

1397

Abstract

Purpose

Supplier selection (SS) is one of the prime competencies in a sourcing decision. Taking into account the key role played by suppliers in facilitating the implementation of green supply chain management (GSCM), it is somewhat surprising that very little research attention has been imparted to the development of a strategic sourcing model for GSCM. This research aims to develop a strategic sourcing framework in which supplier organizations are prioritized and ranked based on their GSCM performance. Accordingly, the benchmark organization is identified and its strategy is explored for GSCM performance improvement.

Design/methodology/approach

The research develops an innovative GSCM performance evaluation framework using six parameters, namely, investment in corporate social responsibility, investment in research and development, utilization of renewable energy, total energy consumption, total carbon-di-oxide emissions and total waste generation. An integrated multicriteria decision-making (MCDM) approach is proposed in which the entropy method calculates criteria weights. The Complex Proportional Assessment (COPRAS) and the Grey relational analysis (GRA) methods are used to rank supplier organizations based on their performance scores. A real-world case of green supplier selection (GSS) is considered in which five leading India-based automobile manufacturing organizations (Supplier 1, Supplier 2, Supplier 3, Supplier 4 and Supplier 5) are selected. Surveys with industry experts at the strategic, tactical, and operational levels are carried out to collect relevant data.

Findings

The results reveal that total carbon dioxide emission is the most influential parameter, as it gains the highest weight. On the contrary, investment in research and development, and total waste generation have no significant impact on GSCM performance. Results show that Supplier 5 secures the top rank. Hence, it is the benchmark organization.

Research limitations/implications

The proposed methodology offers an easy and comprehensive approach to sourcing decisions in the field of GSCM. The entropy weight-based COPRAS and GRA methods offer an error-free channel of decision-making and can be proficiently used to outrank various industrial sectors based on their GSCM performances. This research is specific to the automobile manufacturing supply chain. Therefore, research outcomes may vary across supply chains with distinct characteristics.

Practical implications

The basic propositions of this research are based on a real-world case. Hence, the research findings are practically feasible. The less significant parameters identified in this study would enable managers to impart more attention to vulnerable areas for improvement. This research may help policymakers identify the influential parameters for effective GSCM implementation. As this research considers all aspects of sustainability, the strategies of the benchmark supplier have a direct impact on organizations' overall sustainability. The study would enable practitioners to make various strategies for GSCM performance improvement and to develop a cleaner production system.

Originality/value

The originality of this research lies in the consideration of both economic, social, environmental and operational aspects of sustainability for assessing the GSCM performance of supplier organizations. Quantitative criteria are considered so that vagueness can be removed from the decision. The use of an integrated grey-based approach for developing a strategic sourcing model is another unique feature of this study.

Details

Benchmarking: An International Journal, vol. 29 no. 10
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 13 April 2021

Maryam Eghbali-Zarch, Reza Tavakkoli-Moghaddam, Kazem Dehghan-Sanej and Amin Kaboli

The construction industry is a key driver of economic growth. However, the adverse impacts of construction and demolition waste (CDW) resulted from the active construction…

Abstract

Purpose

The construction industry is a key driver of economic growth. However, the adverse impacts of construction and demolition waste (CDW) resulted from the active construction projects on the economy, environment, public health and social life necessitates an appropriate control and management of this waste stream. Developing and promoting the construction and demolition waste management (CDWM) hierarchy program at the strategic level is essential.

Design/methodology/approach

This study aims to propose a hybrid decision model that hybridizes the Integrated Determination of Objective Criteria Weights (IDOCRIW) and weighted aggregated sum product assessment (WASPAS) under a fuzzy environment.

Findings

The proposed method ranks the potential strategic alternatives by the sustainable development criteria to improve the performance of CDWM. As indicated in the results, the fuzzy approach in the decision-making process enables the transformation of linguistic variables into fuzzy numbers that show uncertainty and ambiguity in real-world systems. Moreover, the close correlation between the final ranking of the proposed methodology and the average priority order of the strategic alternatives obtained by five different multi-criteria decision-making (MCDM) methods implies the validity of the model performance.

Practical implications

This proposed model is an appropriate tool to effectively decide on the development of CDWM from a strategic point of view. It aims to establish an MCDM framework for the evaluation of effective strategies for CDWM according to the indices of sustainable development. Implementing proper operational plans and conducting research in CDWM has the highest priority, and enacting new and more stringent laws, rules and regulations against the production of CDW has secondary priority. This study contributes to the field by optimizing the CDWM by applying the top-priority strategies resulted from the proposed fuzzy hybrid MCDM methodology by the decision-makers or policy-makers to reach the best managerial strategic plan.

Originality/value

In the proposed methodology, the IDOCRIW technique is utilized and updated with the triangular fuzzy numbers for the first time in the literature to derive the weights of sustainable development criteria. The fuzzy WASPAS method is utilized for evaluation and providing a final ranking of the strategic alternatives.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 July 2020

Jolly Puri and Meenu Verma

This paper is focused on developing an integrated algorithmic approach named as data envelopment analysis and multicriteria decision-making (DEA-MCDM) for ranking decision-making…

Abstract

Purpose

This paper is focused on developing an integrated algorithmic approach named as data envelopment analysis and multicriteria decision-making (DEA-MCDM) for ranking decision-making units (DMUs) based on cross-efficiency technique and subjective preference(s) of the decision maker.

Design/methodology/approach

Self-evaluation in data envelopment analysis (DEA) lacks in discrimination power among DMUs. To fix this, a cross-efficiency technique has been introduced that ranks DMUs based on peer-evaluation. Different cross-efficiency formulations such as aggressive and benevolent and neutral are available in the literature. The existing ranking approaches fail to incorporate subjective preference of “one” or “some” or “all” or “most” of the cross-efficiency evaluation formulations. Therefore, the integrated framework in this paper, based on DEA and multicriteria decision-making (MCDM), aims to present a ranking approach to incorporate different cross-efficiency formulations as well as subjective preference(s) of decision maker.

Findings

The proposed approach has an advantage that each of the aggressive, benevolent and neutral cross-efficiency formulations contribute to select the best alternative among the DMUs in a MCDM problem. Ordered weighted averaging (OWA) aggregation is applied to aggregate final cross-efficiencies and to achieve complete ranking of the DMUs. This new approach is further illustrated and compared with existing MCDM approaches like simple additive weighting (SAW) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to prove its validity in real situations.

Research limitations/implications

The choice of cross-efficiency formulation(s) as per subjective preference of the decision maker and different orness levels lead to different aggregated scores and thus ranking of the DMUs accordingly. The proposed ranking approach is highly useful in real applications like R and D projects, flexible manufacturing systems, electricity distribution sector, banking industry, labor assignment and the economic environmental performances for ranking and benchmarking.

Practical implications

To prove the practical applicability and robustness of the proposed integrated DEA-MCDM approach, it is applied to top twelve Indian banks in terms of three inputs and two outputs for the period 2018–2019. The findings of the study (1) ensure the impact of non-performing assets (NPAs) on the ranking of the selected banks and (2) are enormously valuable for the bank experts and policy makers to consider the impact of peer-evaluation and subjective preference(s) in formulating appropriate policies to improve performance and ranks of underperformed banks in competitive scenario.

Originality/value

To the best of the authors’ knowledge, this is the first study that has integrated both DEA and MCDM via OWA aggregation to present a ranking approach that can incorporate different cross-efficiency formulations and subjective preference(s) of the decision maker for ranking DMUs.

Details

Data Technologies and Applications, vol. 54 no. 4
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 4 December 2023

Ved Prabha Toshniwal, Rakesh Jain, Gunjan Soni, Sachin Kumar Mangla and Sandeep Narula

This study is centered on the identification of the most appropriate Technology Adoption (TA) model for investigating the adoption of Industry 4.0 technologies within…

Abstract

Purpose

This study is centered on the identification of the most appropriate Technology Adoption (TA) model for investigating the adoption of Industry 4.0 technologies within pharmaceutical and related enterprises. The aim is to facilitate a smooth transition to advanced technologies while concurrently achieving environmental sustainability.

Design/methodology/approach

Selection of a suitable TA theory is carried out using a hybrid multi-criteria decision-making (MCDM) approach incorporating PIvot Pairwise RElative Criteria Importance Assessment (PIPRECIA) and Fuzzy Measurement of alternatives and ranking according to Compromise solution (F-MARCOS) methods. A group of three experts is formulated for the ranking of criteria and alternatives based on those criteria.

Findings

The results indicate that out of all six TA models considered unified theory of acceptance and use of technology (UTAUT) model gets the highest utility function value, followed by the technical adoption model (TAM). Further, sensitivity analysis is conducted to confirm the validity of the MCDM model employed.

Research limitations/implications

Challenging times like COVID-19 pointed out the importance of technology in the pharmaceutical and healthcare sectors. TA studies in this area can help in the identification of critical factors that can assist pharmaceutical firms in their efforts to embrace emerging technologies, enhance their outputs and increase their efficiency.

Originality/value

The novelty of this research lies in the fact that the utilization of a TA theory prior to its implementation has not been witnessed in existing scholarly literature. The utilization of a TA theory, specifically within the pharmaceutical industry, can assist enterprises in directing their attention toward pertinent factors when contemplating the implementation of emerging technologies and achieving sustainable development.

Details

Management of Environmental Quality: An International Journal, vol. 35 no. 3
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 15 October 2020

Zitong He, Xiaolin Ma, Jie Luo, Anoop Kumar Sahu, Atul kumar Sahu and Nitin Kumar Sahu

Advanced manufacturing machines (AMMs) are searched as a momentous asset across the manufacturing societies for quenching and addressing the production units under economical…

Abstract

Purpose

Advanced manufacturing machines (AMMs) are searched as a momentous asset across the manufacturing societies for quenching and addressing the production units under economical circumstances, i.e. production of high-quality of goods under feasible cost. AMMs are significant in holding the managers against their rivals and competitors with high profit margins. The authors developed the decision support mechanism/portfolio (DSM-P) consist of knowledge-based cluster approach with a dynamic model. The purpose of research work is to measure overall economic worth of AMMs under objective and grey-imperfect (mixed) data by exploring the proposed DSM-P.

Design/methodology/approach

The authors developed the DSM-P that consist of knowledge-based cluster, three multi-criteria decision-making (MCDM) techniques-1-2-3 with complementary grey relational analysis-4(GRA), approach with a dynamic model (complied by technical plus cost and agility measures of AMMs). The proposed DSM-P enables the manager to map the overall economic worth of candidate AMMs under objective and grey-mixed data.

Findings

The presented DSM-P assist the managers for handling the selection problem of AMMs, i.e. CNCs, robots, automatic-guided vehicle, etc under mixed (objective cum grey) data. To enable the readers for intensely understand the work, the utility of proposed approach is displayed by illustrating a polar robot evaluation and selection problem. It is ascertained that the robot candidate-11 alternative is fulfilling the entire technical cum cost and agility measures.

Originality/value

The DSM-P provides more precise and reliable outcomes due to a usage of the dominance theory. Under the dominance theory, the ranks are obtained by MCDM techniques-1-2-3 are compared with ranks gathered by the GRA-4 under objective cum grey data, formed the novelties in presented research work. From a future perspective, the grey-based models in DSM-P can be built/extended/constructed more extensive and can be simulated by the same approach.

Open Access
Article
Publication date: 6 August 2024

Amir Fard Bahreini

Data breaches in the US healthcare sector have more than tripled in the last decade across all states. However, to this day, no established framework ranks all states from most to…

Abstract

Purpose

Data breaches in the US healthcare sector have more than tripled in the last decade across all states. However, to this day, no established framework ranks all states from most to least at risk for healthcare data breaches. This gap has led to a lack of proper risk identification and understanding of cyber environments at state levels.

Design/methodology/approach

Based on the security action cycle, the National Institute of Standards and Technology (NIST) cybersecurity framework, the risk-planning model, and the multicriteria decision-making (MCDM) literature, the paper offers an integrated multicriteria framework for prioritization in cybersecurity to address this lack and other prioritization issues in risk management in the field. The study used historical breach data between 2015 and 2021.

Findings

The findings showed that California, Texas, New York, Florida, Indiana, Pennsylvania, Massachusetts, Minnesota, Ohio, and Georgia are the states most at risk for healthcare data breaches.

Practical implications

The findings highlight each US state faces a different level of healthcare risk. The findings are informative for patients, crucial for privacy officers in understanding the nuances of their risk environment, and important for policy-makers who must grasp the grave disconnect between existing issues and legislative practices. Furthermore, the study suggests an association between positioning state risk and such factors as population and wealth, both avenues for future research.

Originality/value

Theoretically, the paper offers an integrated framework, whose basis in established security models in both academia and industry practice enables utilizing it in various prioritization scenarios in the field of cybersecurity. It further emphasizes the importance of risk identification and brings attention to different healthcare cybersecurity environments among the different US states.

Details

Organizational Cybersecurity Journal: Practice, Process and People, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2635-0270

Keywords

1 – 10 of over 2000