Index

AA. See Arithmetic averaging (AA) ABM. See Agent-based modelling	AHP. See Analytic hierarchy process (AHP)
(ABM)	AI models. See Artificial intelligence
Adaptive neuro-fuzzy inference system	models (AI models)
(ANFIS), 63, 391, 394–395,	AIC. See Akaike information criteria
399-400	(AIC)
forecast accuracy of developed	Akaike information criteria (AIC), 399
models, 401-402	Algebraic product <i>t</i> -norm,
input selection and prediction	124-131
modelling, 396-397	α -cut method, 19–20, 160
limitations, directions for future	Analytic hierarchy process (AHP),
studies and potential	21–22, 70, 185–186, 189, 235,
applications, 404–405	280, 285, 306
practical implications,	fuzzy extensions, 280–288
403-404	Analytic network process (ANP), 83,
R-Code for ANFIS, 410–411	185–186, 190
tender price index forecasting,	ANFIS. See Adaptive neuro-fuzzy
402-403	inference system (ANFIS)
univariate modelling techniques,	ANN. See Artificial neural network
391-394	(ANN)
univariate models application, 398	ANP. See Analytic network process
Advanced modelling techniques, 416,	(ANP)
419	Ant colony system, 42, 92
AEC company. See Architect-engineer-	Appraisal, 313
construction Company (AEC	AR model. See Autoregression model
company)	(AR model)
Age hierarchy, 377	Archimedean <i>t</i> -norms, 117–118
Agenarisk software package, 306	Architect-engineer-construction
Agent unified modelling language	company (AEC company),
(AUML), 164, 165	415
Agent-based model, 163-164	project execution process for, 416
Agent-based modelling (ABM), 83-84,	Area methods, 286–287
154-155	Arithmetic averaging (AA), 242–243
Agglomerative hierarchical clustering,	Arm gestures, robotic manipulator
67	modelling of, 453–460
Aggregated score, 343	Artificial bee colony algorithm, 42
Aggregation, 232, 242-243	Artificial intelligence models (AI
See also Fuzzy aggregation	models), 64, 392, 393, 402,
Agreement. See Idempotence	404-405
_	

Artificial neural network (ANN), 52,	Cause-effect approach, 415
157	Centre of area method (COA method),
hybridisation of fuzzy logic with, 52,	162, 268
63-66	Centre of gravity (COG), 16
Associativity property, 245	CFPRs. See Consistent fuzzy preference
@Risk software package, 306, 311	relations (CFPRs)
Attitude towards risk. See Index of	CFs. See Contribution factors (CFs)
optimism	Chaotic-based DE technique, 68
AUML. See Agent unified modelling	Characteristic of fuzzy set
language (AUML)	alpha-cut (α -cut), 11–13, 19
Autoregression model (AR model), 393	complement, 14, 18
Average tolerance value, 327	core, 11
·	height, 11
Backward stage process, 395	support, 11
Bell-shaped (Gaussian) membership	CI. See Consistency index (CI)
function, 10	CID. See Concept identifier (CID)
BI. See Business intelligence (BI)	CL. See Complexity level (CL)
BIM. See Building information	Classical set, 7
modelling (BIM)	See also Crisp set
Black box models, 405	Classical set theory, 8–9
BOT projects. See Build, operate and	CLDs. See Causal loop diagrams
transfer projects (BOT	(CLDs)
projects)	Closeness coefficient (CC). See Relative
Bounded difference <i>t</i> -norm, 131–136	closeness index
Box-Jenkins model, 391, 393, 398-399	CLP. See Construction labour
Build, operate and transfer projects	productivity (CLP)
(BOT projects), 90, 161	Clustering
Building design applications, 264	agglomerative hierarchical clustering,
Building information modelling (BIM),	66
366, 415	methods based on, 23-24
Business intelligence (BI), 358	model-based clustering, 67
	partitional k-means clustering, 67
C-IOWA. See Consistency IOWA	See also Fuzzy clustering
(C-IOWA)	CM. See Construction management
Capital expenditure (CAPEX), 305	(CM)
CAPEX. See Capital expenditure	CM-FCM. See Construction
(CAPEX)	management FCM modelling
Cash flow analysis of resultant revenue,	(CM-FCM)
311	COA method. See Centre of area
Causal loop diagrams (CLDs), 152–153	method (COA method)
Causal models, 421	Coefficient of determination (R^2) , 64, 69
Cause-and-effect analysis	Coefficient of variation (COV), 317
complex, 434-436	COG. See Centre of gravity (COG)
compound, 433–434	Cognitive maps, 419
simple, 424–432	See also Fuzzy cognitive map (FCM)

Commutativity property, 244	construction risk analysis, fuzzy
Complex cause-and-effect example,	hybrid techniques in, 308
434-436	cost, 390
Complexity level (CL), 293, 295, 296	engineering, 358, 423
Compound cause-and-effect analysis,	CM-FCM model, 423-424
433–434, 437	complex cause-and-effect example
Computational discrete methods, 119	434–436
Computational methods, 119	compound cause-and-effect
extended fuzzy arithmetic	analysis, 433–434, 437
using algebraic product <i>t</i> -norm,	simple cause-and-effect analysis,
124-131	424-432
using bounded difference <i>t</i> -norm,	FSD model of quality management
131-136	practice, 168–170
using drastic product t-norm,	fuzzy AHP application in
137-141	construction project
for implementation	complexity evaluation, 288
of extended fuzzy arithmetic,	consistency of fuzzy pairwise
123-124	comparisons, 290
of standard fuzzy arithmetic,	fuzzy pairwise comparison
121-123	matrices, 289-290
triangular fuzzy numbers, 120	hierarchical structure of project
Concept identifier (CID), 434	complexity, 288–289
Concordance index, 191	local and global weights of criteria
Consecutive fuzzy arithmetic	and sub-criteria, 290-293
operations, 116	project complexity and
Consensus, 231–232, 233, 234–235,	performance, 293–295
236–237, 239, 241, 242, 270,	fuzzy arithmetic operations in
344	construction applications,
See also Fuzzy consensus	141-145
Consensus index, 264	fuzzy consensus reaching and
Consensus measures, 236	aggregation in construction
Consensus-reaching process, 234	industry applications,
Consistency index (CI), 284	263-270
Consistency IOWA (C-IOWA), 249	fuzzy simulation technique, 168–171
Consistency of fuzzy pairwise	applications of fuzzy system
comparisons, 284–285	dynamics (FSD), 168-170
check for, 290	for construction modelling,
Consistency ratio (CR), 198-199, 284	167-168
Consistent fuzzy preference relations	fuzzy agent-based modelling
(CFPRs), 266	(ABM) applications,
Constrained fuzzy arithmetic, 286, 287	170–171, 172
Construction, 5, 9, 20, 24, 30, 39, 50, 63,	managers, 414
64, 80, 89, 95, 141, 150–151,	procurement, 266–267
155, 171, 187, 283	productivity applications, 269–270
bidding applications, 268–269	sector, 5

robotic manipulator modelling of
arm gestures, 453–460
Sugeno-type fuzzy inference system,
460-463
swing, 469
travel, 470
Crisp hierarchy, 363
Crisp set, 11–13, 14, 18
See also Classical set
Crystalball, 306
CSC. See Construction supply chain
(CSC)
'Cube' of project complexity, 288-289
1 3 1 3
Data management strategy, 358
Data warehouse (DW), 359–360
Data-driven methods, 20, 22
Datacube, 370
DB project delivery. See Design build
project delivery (DB project
delivery)
DE. See Differential evolution (DE)
Decision criteria, 341
Decision makers (DMs), 339
Decision support system, 45, 358, 419
Decision-making, 421
in construction management
applications of IF-MCDM, 221
FMCDM methods and
applications, 197–220
fuzzy set theory and typical
extensions, 192–197
MCDM process and methods,
186-192
processes, 5, 9, 265, 343, 367, 379
for project planning, 367
Defuzzification, 16, 285–288
centre of area (COA), 162, 198, 268
286
centre of gravity (COG), 16
interface, 27
largest of maxima (LOM), 162
mean of maxima, 17
median of area, 16
method, 206, 350

middle of maxima, 162, 286	DTraT approach. See Defuzzified
smallest of maxima, 162	trapezoidal type-2 FS
Defuzzified trapezoidal type-2 FS	approach (DTraT approach)
approach (DTraT approach),	DW. See Data warehouse (DW)
216	Dynamic modelling of arm gestures,
Degree of belonging, 307	453-454
Degree of experts, 234–235	Dynamic systems, 152–153
Degree of membership. See	
Membership functions	Earthmoving operation, 142
Degree of truth. See Membership	Earthmoving process-type system, 152
functions	EAs. See Evolutionary algorithms
Degrees of freedom (DOF), 210, 454	(EAs)
Degrees of support (DoS), 26	EBS financial system. See Enterprise
Delphi method, 339, 344	business suite financial system
Denavit-Hartenberg model (D-H	(EBS financial system)
model), 453, 454	Econometric techniques, 392
DES. See Discrete event simulation	Economic criteria, 79
(DES)	Economic growth, 5
Design build project delivery (DB	Economic markets, 414
project delivery), 267	Economic screening, 313
Deterministic solutions, 314	concept selection parameters, 321
Deterministic values, 88–89, 155	dry-hole risk for subsea option,
Deterministic variable, 156, 157, 162	314-315
D-H model. See Denavit-Hartenberg	fuzzy AHP technique, 318-323
model (D-H model)	MCS, 314
Dice operation, 361	normalised weight distribution, 322
Differential evolution (DE), 43	pairwise comparison of factors, 322
Dimensions, 363, 368, 369	production risk for subsea option,
Direct assignment of membership	315–318
functions, 20–21	tolerance value for membership
Discordance index, 191	functions of fuzzy sets, 323
Discrete event simulation (DES),	Effective risk analysis, 305
83-84, 152	Effective risk management, 304–305
Distance measure, 27, 212, 261,	EFNIM. See Evolutionary fuzzy neural
265, 269	inference model (EFNIM)
Distribution methods, 286–287	EKF. See Extended Kalman filter
DMs. See Decision makers (DMs)	(EKF)
DOF. See Degrees of freedom (DOF)	ELECTRE. See Elimination and choice
DoS. See Degrees of support (DoS)	expressing reality
.NET framework, 464	(ELECTRE)
Drastic product <i>t</i> -norm, 137–141	Elimination and choice expressing
Drill-down operations, 361	reality (ELECTRE), 70, 186,
Drilling cost, 325	191
Dry-hole risk, 311	Empirical data, 337, 339, 343
for subsea option, 314–315	Empirical evidence, 396

Enterprise business suite financial	F-PROMETHEE. See FS-based
system (EBS financial system), 421	preference ranking
	organisation method enrichment evaluation
Enterprise project planning system, 422	
Enterprise resource planning system	(F-PROMETHEE)
(ERP system), 421	FABM. See Fuzzy agent-based
Entropy for fuzzy sets, 3	modelling (FABM)
Entropy-based fuzzy AHP, 287, 290, 293, 296	FAHP. See Fuzzy analytic hierarchy process (FAHP)
Environmental criteria, 78–79	Failed risk management,
ERD well solution. See Extended reach	304-305
drilling well solution (ERD	FATLBO. See Fuzzy adaptive teaching-
well solution)	learning-based optimization
ERP system. See Enterprise resource	(FATLBO)
planning system (ERP system)	FCM. See Fuzzy c-means (FCM);
ETL process. See Extract, transform	Fuzzy cognitive map (FCM)
and load process (ETL	FCM-PSO. See Fuzzy c-means-particle
process)	swarm optimisation
Euler angle, 452	(FCM-PSO)
Evolutionary algorithms (EAs), 42	FCQRA framework. See Fuzzy
Evolutionary fuzzy neural inference	consensus qualitative risk
model (EFNIM), 52, 64–65	analysis framework (FCQRA
Expert judgement, 21, 30, 162–163,	framework)
185–187, 231, 267, 284, 290	FDES. See Fuzzy discrete event
Expert knowledge, 6-7, 63, 70, 80, 84,	simulation (FDES)
88-90, 150, 158, 162, 364, 368	FDMM. See Fuzzy distance
Expert systems, 417	measurement method
See also fuzzy expert system	(FDMM)
Expertise, 417	Feedback, 420
Extended fuzzy arithmetic, 113,	loops, 153
116-119	processes, 153–154
using algebraic product t-norm,	FEGA-PSO. See Fuzzy enabled
124-131	GA-PSO method (FEGA-PSO)
using bounded difference <i>t</i> -norm,	FES. See Fuzzy expert system (FES)
131-136	FIS. See Fuzzy inference system (FIS)
using drastic product t-norm,	FL. See Fuzzy logic (FL)
137-141	Flat fuzzy numbers, 19
implementation, 123–124	Flexible management of essential
Extended Kalman filter (EKF),	construction tasks
456-458	essential tasks in construction project
Extended reach drilling well solution	management, 364–367
(ERD well solution), 312	example of queries resolution,
Extension principle, 116	379-382
Extract, transform and load process	fuzzy multi-dimensional model,
(ETL process), 359	362-364

- fuzzy multi-dimensional structure, 367–379 information, 358–359 measure and dimensions, 383 multi-dimensional structure, 359–362
- FLINMAP. See Fuzzy linear programming technique for multi-dimensional analysis of preference (FLINMAP)
- FMCDM. See Fuzzy multi-criteria decision-making (FMCDM)
- FMCS. See Fuzzy Monte Carlo simulation (FMCS)
- FN-IOWA. See Fuzzy number induced ordered weighted averaging (FN-IOWA)
- FNIS. See Fuzzy negative ideal solution (FNIS)
- FNNs. See Fuzzy neural networks (FNNs)
- FOAM. See Fuzzy optimal aggregation method (FOAM)
- Footprint of uncertainty (FOU), 196 Forecast accuracy of developed models, 401–402
- Forward recursive equations, 454 FOU. See Footprint of uncertainty (FOU)
- FPIS. See Fuzzy positive ideal solution (FPIS)
- FPRC approach. See Fuzzy preference relation consensus approach (FPRC approach)
- FPWA operator. See Fuzzy prioritised weighted averaging operator (FPWA operator)
- FRBS. See Fuzzy rule-based system (FRBS)
- Frequency response function (FRF), 67–68
- FRF. See Frequency response function (FRF)
- FSAM. See Fuzzy similarity aggregation method (FSAM)

- FSC model. See Fuzzy similarity consensus model (FSC model)
- FSD. See Fuzzy system dynamics (FSD)
- FSE. See Fuzzy synthetic evaluation (FSE)
- FST. See Fuzzy set theory (FST)
- Fuzzification, 16-17, 394
- Fuzziness accumulation, 116
- Fuzzy ABM model of construction crew motivation and performance, 170
- Fuzzy adaptive teaching-learning-based optimization (FATLBO), 42–43
- Fuzzy agent-based modelling (FABM), 84, 91–92, 162–167
 - applications, 170-171, 172
- Fuzzy aggregation, 112–113, 242 classification of fuzzy aggregation operators and properties, 243–245
 - FN-IOWA, 248-251
 - fuzzy aggregation operators for MCGDM problems, 245
 - fuzzy prioritised weighted aggregation operators, 251–257
 - fuzzy prioritized weighted averaging operator (FPWA operator), 252
 - fuzzy TOPSIS-based approach for prioritised aggregation, 257–263
 - FWA, 245-246
 - LOWA, 246-248
- Fuzzy analytic hierarchy process (FAHP), 70–79, 235, 270, 280, 318–323
 - application
 - in evaluating construction project complexity, 288–295
 - in oil drilling, 310-313
 - computation in subsea drilling option, 324–331

investment appraisal for oil drilling	building design applications, 264
methods, 304, 323	consensus measures, 236
appraisal, 313	construction
economic screening, 313–323	bidding applications, 268–269
risk analysis in projects, 305-310	procurement and project delivery
Fuzzy arithmetic, 19	applications, 266–267
alpha-cut (α -cut) approach, 19–20	productivity applications,
extension principle approach, 19–20	269-270
Fuzzy arithmetic operations, 238–239	importance degree of experts,
computational methods, 119–141	234–235
in construction applications,	for MCGDM problems,
141–145	236-242
exact mathematical methods,	mechanism adopting to guide
112-119	discussion process, 234
fuzzy addition, 113, 238	preference representation formats,
fuzzy division, 113, 120	235-236
fuzzy multiplication, 113, 115, 120	risk analysis and hazard assessment
fuzzy subtraction, 113, 120	applications, 265–266
Fuzzy c-means (FCM), 23, 49, 66–68,	Fuzzy cumulative distribution function
160–161	(fuzzy CDF), 84
Fuzzy c-means-particle swarm	Fuzzy database, 384
optimisation (FCM-PSO),	Fuzzy datacube, 363
68-69	Fuzzy discrete event simulation
Fuzzy calculator, 141	(FDES), 84, 88–90, 142, 151
Fuzzy CDF. See Fuzzy cumulative	157–159, 167
distribution function (fuzzy	Fuzzy distance measurement method
CDF)	(FDMM), 265
Fuzzy clustering, 66	Fuzzy domain, 19–20
fuzzy c-means (FCM) clustering,	Fuzzy enabled GA-PSO method
66-70	(FEGA-PSO), 51
subtractive clustering, 66–67	Fuzzy evaluation vector of RM
See also Clustering	capability, 348–349
Fuzzy cognitive map (FCM), 414–416	Fuzzy extensions of AHP, 280
enhancing CM tools and practices	consistency of fuzzy pairwise
with, 417–419	comparisons, 284–285
modelling, 419–423	fuzzy pairwise comparisons,
Fuzzy composition, 15–16	281-284
Fuzzy consensus, 232–234, 242,	fuzzy weights and defuzzification,
263-266, 270-271	285-288
See also Consensus	Fuzzy feedback models, 420
Fuzzy consensus qualitative risk	Fuzzy hybrid machine learning, 52,
analysis framework (FCQRA	92–93
framework), 265	fuzzy clustering techniques, 66–70
Fuzzy consensus-reaching process, 233,	hybridisation of fuzzy logic with
234, 263	ANN technique, 52, 63–66
•	• ' '

papers for fuzzy hybrid machine	fuzzy agent-based modelling,
learning techniques in	162-167
construction, 53–62	fuzzy DES, 157-159
techniques, 38	fuzzy system dynamics, 159–162
Fuzzy hybrid modelling in construction,	Fuzzy machine learning techniques, 30,
29-30	157, 159–163, 166, 173
Fuzzy hybrid optimization, 41, 92	Fuzzy membership functions, 49,
fuzzy hybrid evolutionary models,	65-66, 84, 460-462
43, 48–49	Fuzzy Monte Carlo simulation
fuzzy hybrid particle swarm	(FMCS), 84, 88, 306
optimization models, 50–52	Fuzzy multi-criteria decision-making
models, 38	(FMCDM), 38, 70, 93–94
papers for fuzzy hybrid optimization	fuzzy AHP, 70, 78-79
models in construction, 44–47	fuzzy TOPSIS, 80–81
Fuzzy hybrid particle swarm	fuzzy VIKOR, 82–83
optimization models, 50–52	methods, 186, 267
Fuzzy hybrid techniques	methods and applications, 197
in construction engineering and	in construction management,
management	197—220
future research directions, 94–96	FS-based MCDM methods and
fuzzy multi-criteria decision-	applications, 197–205
making, 70-83, 93-94	HFS-based MCDM methods and
fuzzy simulation, 83-92, 94	applications, 210–214
systematic literature review	IFS-based MCDM methods and
methodology, 39–41	applications, 205–210
in construction risk analysis, 308	linguistic variables, 427
Fuzzy inference system (FIS), 24, 453,	relationships for significant
469	first-time events, 428–430
See also Fuzzy expert system (FES);	T2FS-based MCDM methods and
Fuzzy rule-based system	applications, 214–220
(FRBS); Mamdani inference;	papers for fuzzy multi-criteria
Mamdani-type fuzzy inference	decision-making (MCDM)
system; Sugeno inference;	techniques in construction,
Sugeno fuzzy inference	71-77
system; Sugeno-type fuzzy	See also Group decision-making
inference system	process (GDM process);
Fuzzy intersection, 14	Multi-criteria decision-making
Fuzzy linear programming technique	(MCDM); Multi-criteria
for multi-dimensional analysis	group decision-making
of preference (FLINMAP), 83	problems (MCGDM
Fuzzy linguistic terms, 266	problems)
Fuzzy logic (FL), 38, 151, 305–308,	Fuzzy multi-dimensional structure, 359,
359, 362, 417, 453	362-364, 367
integration and simulation	company, 374–375
techniques, 157	construction organisations, 367–368

construction type, 3/1–3/2	Fuzzy risk allocation methodology,
dimensions, 369	345-351
injury, 378–379	Fuzzy rule-based systems (FRBS), 3,
location, 375–376	24-25, 27-29, 42-43, 235
project, 370–371	See also Fuzzy inference system
promoter, 374	(FIS); Fuzzy rule-based
task, 372–374	system (FRBS); Mamdani
time, 369–370	inference; Mamdani-type
worker, 377–378	fuzzy inference system;
Fuzzy negative ideal solution (FNIS),	Sugeno inference; Sugeno
258, 269	fuzzy inference system;
Fuzzy neural networks (FNNs), 52	Sugeno-type fuzzy inference
Fuzzy number induced ordered	system
weighted averaging	Fuzzy set theory (FST), 5–6, 185–186
(FN-IOWA), 232, 248–251	192, 231, 232, 339
Fuzzy numbers, 18–20, 91, 112–113	HFSs, 194–195
Fuzzy optimal aggregation method	IFSs, 193–194
(FOAM), 265	T2FSs, 195–197
Fuzzy pairwise comparison	Fuzzy set-based analytic hierarchy
check for consistency of, 290	process, 198–200
matrices, 289–290	Fuzzy set-based elimination and choice
Fuzzy partitions, 13–14	expressing reality, 202
Fuzzy positive ideal solution (FPIS),	Fuzzy set-based MCDM methods and
258, 269	applications, 197
Fuzzy preference relations, 203, 235,	analytic hierarchy process, 198–200
249, 265	elimination and choice expressing
See also Preference relations	reality, 202
Fuzzy preference relation consensus	F-MCDM method applications in
approach (FPRC approach),	construction management,
267	203–205
Fuzzy prioritised weighted aggregation	F-PROMETHEE, 203
operators, 251–257	technique for order of preference,
Fuzzy prioritised weighted averaging	200–202
operator (FPWA operator),	weighted sum method, 197–198
252	Fuzzy set-based preference ranking
Fuzzy RA decision-making process, 343	organisation method
Fuzzy random	enrichment evaluation
approach, 51	(F-PROMETHEE), 203
multi-objective decision-making	Fuzzy sets, 7–17, 342, 358, 417
model, 50–51	Fuzzy similarity aggregation method
variables, 48, 88	(FSAM), 265
Fuzzy ranking method, 89, 158, 198,	Fuzzy similarity consensus model (FSC
199	model), 267
Fuzzy relational matrix, 347–348	Fuzzy simulation, 38, 83–92, 94,
Fuzzy relations, 15–16	112–113
1 uzz j 101u110110, 15 10	112 113

in construction, $151-155$, $16/-1/1$	Gabi software package, 306
FDES, 88–90	GA. See Genetic algorithms (GA)
FMCS, 84, 88	Gaussian function, 394
FSD, 90-91	GDM process. See Group decision-
fuzzy ABM, 91–92	making process (GDM
integrating fuzzy logic and, 157–167	process)
limitations, 155–157	Generalised PA operators (GPA
papers for fuzzy simulation	operators), 252
techniques in construction,	Generalised POWA operators
85–87	(GPOWA operators), 252
Fuzzy synthetic evaluation (FSE), 339,	Genetic algorithms (GA), 43, 157
342, 343	Genetic algorithms with particle swarm
Fuzzy system dynamics (FSD), 84,	optimisation (GA-PSO), 51
90-91, 151, 159-162	Genetic fuzzy systems, 163, 393
applications, 168–170	Geometric averaging (GA), 242–243
model of quality management	Geometric mean method, 285
practice, 168–170	Ghana's water sector, 339
Fuzzy technique for order of preference	GLNPSO-based FRS. See Global-local-
by similarity to ideal solution	neighbour PSO with fuzzy
(Fuzzy TOPSIS), 70, 80–81,	random simulation
232	(GLNPSO-based FRS)
fuzzy TOPSIS-based approach, 263	Global urban rate, 185
for prioritised aggregation, 257–263	Global-local-neighbour PSO with fuzzy
Fuzzy TOPSIS. See Fuzzy technique for	random simulation
order of preference by	(GLNPSO-based FRS), 50
similarity to ideal solution	Goal commitment, 156
(Fuzzy TOPSIS)	GPA operators. See Generalised PA
Fuzzy upper and lower project	operators (GPA operators)
management costs, 324	GPOWA operators. See Generalised
Fuzzy variables, 13–14, 156	POWA operators (GPOWA
Fuzzy vector, 343, 349	operators)
Fuzzy VIKOR, 82–83	Grade of membership. See Membership
Fuzzy weighted aggregation, 239	functions
Fuzzy weighted average (FWA), 232,	Group decision-making process (GDM
245-246	process), 231
aggregation method, 268	
Fuzzy weighted mean. See Fuzzy	Hazard assessment applications,
weighted average (FWA)	265-266
FWA. See Fuzzy weighted average	Health and Safety Executive (HSE),
(FWA)	326
	Health, safety and environment (HSE),
GA. See Geometric averaging (GA)	311
GA-PSO. See Genetic algorithms with	Hesitant fuzzy element (HFE), 195
particle swarm optimisation	Hesitant fuzzy sets (HFSs), 193,
(GA-PSO)	194—195

HFS-based MCDM methods and	with machine learning techniques,
applications, 210	30, 38, 52, 92, 94–95
HF-MCDM methods and	with MCDM techniques, 38, 70
applications in construction	with optimization techniques, 42
management, 214	with simulation techniques,
HFS-based analytic hierarchy	83-84, 91, 94, 95
process, 210-211	of fuzzy methods, 92
HFS-based elimination and choice	
expressing reality, 213–214	I-IOWA. See Importance IOWA
HFS-based technique for order of	(I-IOWA)
preference, 212–213	Idempotence, 244
Hesitant fuzzy sets-based analytic	IF-MCDM. See Intuitionistic fuzzy-
hierarchy process, 210–211	multi-criteria decision-making
Hesitant multiplicative programming	(IF-MCDM)
method (HMPM), 210	IFSs. See Intuitionistic fuzzy sets (IFSs)
Heterogeneous group, 235	IFWA operator. See Intuitionistic fuzzy
Heuristic optimization technique, 42	weighted average operator
HFE. See Hesitant fuzzy element (HFE)	(IFWA operator)
HFSs. See Hesitant fuzzy sets (HFSs)	Importance IOWA (I-IOWA), 249
Hierarchical structure, 422	Incompatibility, 13
High dimensionality, 95	Index of optimism, 287
High RM capability, 342	Induced ordered weighted averaging
High-performance concrete (HPC), 64	(IOWA), 248–249
HMPM. See Hesitant multiplicative	Inference process, 26
programming method	Information systems (ISs), 358
(HMPM)	Information technologies, 358
Horizontal methods, 20–21	Infrastructure projects, 414
HPC. See High-performance concrete	Injury dimension hierarchy, 378–379
(HPC)	Input selection, 396–397
HSE. See Health and Safety Executive	INSHT. See Spanish National Institute
(HSE); Health, safety and	for Safety and Hygiene at
environment (HSE)	Work (INSHT)
Human motion, 452	Intelligent computing layer on
Hybrid computing techniques, 392, 393	traditional tools, 422
Hybrid fuzzy approach, 453	Intelligent decision support systems, 419
Hybrid genetic algorithm	Intelligent modelling, 414
(GA)-NNDFR technique, 65	Intersection of fuzzy sets, 14
Hybrid methods, 30	Intersection operations, 14
Hybrid neuro-fuzzy systems, 52, 63	Interval type-2 fuzzy sets (IT2FSs), 196
Hybridization, 38	Intuitionistic fuzzy sets (IFSs), 193-194
of fuzzy logic, 52	IFS-based MCDM methods and
with ANN technique, 52,	applications, 205
63-66	IF-MCDM method and
with clustering techniques, 23–24,	applications in construction
49, 52, 66–70, 93, 94–95	management, 210

IFS-based analytic hierarchy Law of Cosine, 464 process, 205-206 LCB. See Low-carbon building (LCB) IFS-based elimination and choice Least square method, 390 Level of confidence, 79, 287 expressing reality, 207-209 IFS-based PROMETHEE. Linear programming, 42, 92, 211, 308 209 - 210Linguistic F-Cube Factory, 364 Linguistic hedges, 15 IFS-based technique for order of Linguistic labels, 377 preference, 206-207 Intuitionistic fuzzy weighted average Linguistic modifiers, 15 operator (IFWA operator), Linguistic ordered weighted averaging (LOWA), 232, 246-248 Linguistic variables, 343, 346, 347, 358 Intuitionistic fuzzy-multi-criteria decision-making (IF-MCDM), Liquefied natural gas (LNG), 80 Ljung-Box Q-statistics, 398 LNG. See Liquefied natural gas (LNG) applications in construction management, 221 Local and global weights of criteria and method and applications in sub-criteria, 290-293 construction management, Location dimension hierarchy, 375–376 Logistics rules, 421 210 LOM. See Largest of maxima (LOM) IOWA. See Induced ordered weighted averaging (IOWA) Loose volume, 143 ISs. See Information systems (ISs) Low price, 7 IT2FS. See Interval type-2 fuzzy sets Low RM capability, 342 Low-carbon building (LCB), 186 (IT2FSs) Iterative algorithms, 234 LOWA. See Linguistic ordered weighted averaging (LOWA) Lukasiewicz t-norm. See Bounded Jacobian matrices, 457 difference t-norm Kalman filter(ing), 453, 457 extended Kalman filter, 456-458 MA model. See Moving average model motion trajectory tracking, 453 (MA model) nonlinear Kalman filtering, 466 Machine learning, 52 MAE. See Mean absolute error (MAE) sensor fusion method, 470 unscented Kalman filter, 456, Mamdani inference, 26, 27 See also Fuzzy expert system (FES); 458 - 460Fuzzy inference system (FIS); Kernel functions, 394, 400-401 Kinect visual camera, 453, 456, 466 Fuzzy rule-based system motion capture with, 463-465 (FRBS); Mamdani-type fuzzy Kinship relation, 363, 370 inference system Knowledge representation techniques, Mamdani-type fuzzy inference system, 460 421 See also Fuzzy expert system (FES); Fuzzy inference system (FIS); L-R fuzzy numbers, 19 Labour, 170-171 Fuzzy rule-based system Largest of maxima (LOM), 162 (FRBS); Mamdani inference

MAPE. See Mean absolute percentage	characteristics, 11–13
error (MAPE)	defuzzification, 16–17
Mathematical methods, 112	fuzzy relations and fuzzy
consecutive fuzzy arithmetic	composition, 15–16
operations, 116	fuzzy variables and fuzzy partitions,
for implementation of extended fuzzy	13–14
arithmetic, 116–119	representing membership functions,
implementation of standard fuzzy	9–10
arithmetic, 113–116	See also Fuzzy membership functions
MATLAB program, 470	Metaheuristic optimization technique,
Max-min composition, 16	42
Maxima methods, 286–287	Microsoft Kinect motion camera, 463
MCDM. See Multi-criteria decision-	Middle of maxima (MOM), 162
making (MCDM)	Min <i>t</i> -norm, 116
MCGDM problems. See Multi-criteria	MOA. See Median of area (MOA)
group decision-making	Model-based clustering technique, 67
problems (MCGDM	Moderate RM capability, 342
problems)	Moderator, 231–232
MCS. See Monte Carlo simulation	MOM. See Mean of maxima (MOM);
(MCS)	Middle of maxima (MOM)
ME design. See Mechanistic-empirical	Monotonicity property, 244
design (ME design)	Monte Carlo simulation (MCS), 82,
Mean absolute error (MAE), 64	151, 306, 314, 458
Mean absolute percentage error	Motion capture, 463–465
(MAPE), 397, 398	Motion sensing system, 452
Mean aggregation operator, 269–270	Motion trajectory tracking, 453
Mean of maxima (MOM), 17	Moving average model (MA model),
Mean square error (MSE), 29, 64	393
Mechanistic-empirical design (ME	MRC. See Multimode resource-
design), 68	constrained (MRC)
Median of area (MOA), 16	MSE. See Mean square error (MSE)
Medium, 12	Multi-attribute utility function, 235
Medium price, 7	Multi-criteria analysis methods,
Membership function specification	313–314
methods, 20	Multi-criteria decision-making
based on clustering, 23–24	(MCDM), 38, 185–186
horizontal method, 20–21	methods, 70, 280
pairwise comparison using analytic	process, 264
hierarchy process, 21–22	process and methods, 186
statistical methods, 22–23	AHP, 189
vertical method, 20–21	ANP, 190
Membership function, 7, 159–160,	in construction management,
346–347, 461–462	186–192
basic set operations on fuzzy sets,	ELECTRE method, 191
14–15	PROMETHEE, 192
= : = =	

TOPSIS, 190–191	Nonlinear Kalman filtering methods,
WSM, 188–189	466
Multi-criteria group decision-making	Nonlinear Kalman filtering-based
problems (MCGDM	gesture tracking, 453,
problems), 231, 232, 235	456-457
fuzzy aggregation processes,	Nonlinear models, 393
242-263	Nonlinear system dynamics, 454–457
fuzzy consensus reaching and	Normalised mean absolute error
aggregation, 263–270	(NMAE), 398
fuzzy consensus-reaching process,	Normalised weight distribution, 318
233-242	NPV. See Net present value (NPV)
Multi-dimensional structure, 359	•
DW, 359–360	Object hierarchies, 421
fuzzy logic, 362	ODC. See Overall degree of consensus
operations, 360–362	(ODC)
Multi-linear regression, 64	Offline FCM modelling, 415
Multi-nonlinear regression, 64	Oil drilling
Multimode resource-constrained	application of fuzzy AHP techniques
(MRC), 49	in, 310
Multivariate models, 391	case study, 311–312
Myo armband sensor, 453, 466	ERD well solution, 312
motion capture with,	mapping project initiation stage, 310
463-465	subsea solution, 312, 313
Myo motion sensor, 455	On line analytical processing (OLAP),
	358, 360
Negative ideal solution (NIS), 257–258	Operating expenditure (OPEX), 313
distances of weighted normalised	Optimization, 41–43, 48, 92
collective evaluations, 262	Optimisation algorithms, 234
Net present value (NPV), 311	Optimum system hierarchy analysis, 42
Neural-network-driven fuzzy reasoning	Ordered weighted averaging (OWA),
technique (NNDFR	242-243, 246-247
technique), 65	Organisational complexity
Neuro-fuzzy hybrid models, 308	contours of global weights for
Newton-Euler equations, 454	sub-criteria within, 293
Newton-Euler equation-based	fuzzy pairwise comparison matrix of
dynamics, 453	sub-criteria within, 292
NIS. See Negative ideal solution (NIS)	pairwise comparisons by experts with
NMAE. See Normalised mean absolute	regard to, 291
error (NMAE)	Out-of-sample forecast, 401
NNDFR technique. See Neural-	Overall degree of consensus (ODC), 240
network-driven fuzzy	OWA. See Ordered weighted averaging
reasoning technique (NNDFR	(OWA)
technique)	
Non-convex fuzzy set, 12–13	P-IOWA. See Preference IOWA (P-IOWA)

operators (PA operators) Pairwise comparison, 291, 322 using analytic hierarchy process, 21–22 consistency of fuzzy, 284–285 fuzzy, 281–284 Pareto-optimal set, 49 Particles swarm optimization (PSO), 42–43, 157 Particles, 50 Partitional k-means clustering, 66–67 Percentage error metrics, 398 PIS. See Positive ideal solution (PIS) Pivot operation, 362 Planning, 421 analysis, 366–367, 369, 379 PM. See Project management (PM) PM—FCM model. See Project management—fuzzy c-means model (PM—FCM model) Positive ideal solution (PIS), 257–258 distances of weighted normalised collective evaluations to, 262 Post-mortem analysis, 416 POWA operators. See Prioritised OWA operators (POWA operators) PPPs. See Public—private partnerships (PPPs) Prediction modelling, 396–397 Preference rollow A (P-IOWA), 249 Preference rollow a (PROMETHEE), 7, 185–186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic variable, 150, 151, 156, 157, 162 Probabilistic variable, 150, 151, 156, 158, 157, 162 Probabilistic variable, 150, 151, 156, 157, 162 Probabilistic variable, 150, 151, 164 Production risk for vubers, 5, 9, 25, 28, 42, 65, 91, 93 Project, 370–371 complexity, 29, 293–295 framework for measuring, 288 hierarchical structure, 288–289 delivery applications, 266–267 dimension hierarchy,	PA operators. See Prioritised averaging	Prioritised OWA operators (POWA
using analytic hierarchy process, 21–22 consistency of fuzzy, 284–285 fuzzy, 281–284 Pareto-optimal set, 49 Particles swarm optimization (PSO), 42–43, 157 Particles, 50 Partitional k-means clustering, 66–67 Percentage error metrics, 398 PIS. See Positive ideal solution (PIS) Pivot operation, 362 Planning, 421 analysis, 366–367, 369, 379 PM. See Project management (PM) PM—FCM model. See Project management—fuzzy c-means model (PM—FCM model) Positive ideal solution (PIS), 257–258 distances of weighted normalised collective evaluations to, 262 Post-mortem analysis, 416 POWA operators. See Prioritised OWA operators (POWA operators) PPPS. See Public—private partnerships (PPPs) Preference IOWA (P-IOWA), 249 Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic values, 155 Probabilistic values, 152 Production risk for subsea option, 315–318 Production; 56, 25, 25, 28, 42, 65, 91, 93 Project, 370–371 complexity, 279, 293–295 framework for measuring, 288 hierarchical structure, 288–289 delivery applications, 266–267 dimension hierarchy, 371 performance, 168–169, 266, 270, 279–280, 293–295 PPP, 288 Project execution risk sanlysis in, 305–	operators (PA operators)	operators), 252
21–22 consistency of fuzzy, 284–285 fuzzy, 281–284 Pareto-optimal set, 49 Particles warm optimization (PSO), 42–43, 157 Particles, 50 Partitional k-means clustering, 66–67 Percentage error metrics, 398 PIS. See Positive ideal solution (PIS) Pivot operation, 362 Planning, 421 analysis, 366–367, 369, 379 PM. See Project management (PM) PM—FCM model. See Project management—fuzzy c-means model (PM—FCM model) Positive ideal solution (PIS), 257–258 distances of weighted normalised collective evaluations to, 262 Post-mortem analysis, 416 POWA operators. See Prioritised OWA operators (POWA operators) PPPS. See Public—private partnerships (PPPs) Preference IOWA (P-IOWA), 249 Preference IOWA (P-IOWA), 249 Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic preference relations, 235–236 multiplicative preference relations Preference representation formats, 235–236 Prioritised averaging operators (PA	Pairwise comparison, 291, 322	Probabilistic distributions, 84, 156, 158
consistency of fuzzy, 284–285 fuzzy, 281–284 Pareto-optimal set, 49 Particle swarm optimization (PSO), 42–43, 157 Particles, 50 Partitional k-means clustering, 66–67 Percentage error metrics, 398 PIS. See Positive ideal solution (PIS) Pivot operation, 362 Planning, 421 analysis, 366–367, 369, 379 PM. See Project management (PM) PM—FCM model. See Project management—fuzzy c-means model (PM—FCM model) Positive ideal solution (PIS), 257–258 distances of weighted normalised collective evaluations to, 262 Post-mortem analysis, 416 POWA operators. See Prioritised OWA operators (POWA operators) PPPs. See Public—private partnerships (PPPs) Prediction modelling, 396–397 Preference IOWA (P-IOWA), 249 Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic preference relations, 235–236 multiplicative preference relations, 235–236 Prioritised averaging operators (PA	using analytic hierarchy process,	Probabilistic values, 155
Particle swarm optimization (PSO), 42–43, 157 Particles, 50 Partitional k-means clustering, 66–67 Percentage error metrics, 398 PIS. See Positive ideal solution (PIS) Pivot operation, 362 Planning, 421 analysis, 366–367, 369, 379 PM. See Project management (PM) PM—FCM model. See Project management (PM) POSitive ideal solution (PIS), 257–258 distances of weighted normalised collective evaluations to, 262 Post-mortem analysis, 416 POWA operators. See Prioritised OWA operators (POWA operators) PPPs. See Public—private partnerships (PPPs) Prediction modelling, 396–397 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185–186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 Inguistic preference relations, 235–236 multiplicative preference relations Preference representation formats, 235–236 Prioritised averaging operators (PA	21-22	Probabilistic variable, 150, 151, 156,
Paretico-optimal set, 49 Particles swarm optimization (PSO), 42–43, 157 Particles, 50 Partitional k-means clustering, 66–67 Percentage error metrics, 398 PIS. See Positive ideal solution (PIS) Pivot operation, 362 Planning, 421 analysis, 366–367, 369, 379 PM. See Project management (PM) PM—FCM model. See Project management—fuzzy c-means model (PM—FCM model) Positive ideal solution (PIS), 257–258 distances of weighted normalised collective evaluations to, 262 Post-mortem analysis, 416 POWA operators. See Prioritised OWA operators (POWA operators) PPPs. See Public—private partnerships (PPPs) Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185–186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic preference relations, 235 See also Fuzzy preference relations Preference representation formats, 235–236 Prioritised averaging operators (PA	consistency of fuzzy, 284-285	157, 162
Particle swarm optimization (PSO), 42–43, 157 Partitional k-means clustering, 66–67 Percentage error metrics, 398 PIS. See Positive ideal solution (PIS) Pivot operation, 362 Planning, 421 analysis, 366–367, 369, 379 PM. See Project management (PM) PM—FCM model. See Project management—fuzzy c-means model (PM—FCM model) Positive ideal solution (PIS), 257–258 distances of weighted normalised collective evaluations to, 262 Post-mortem analysis, 416 POWA operators. See Prioritised OWA operators (POWA operators) PPPs. See Public—private partnerships (PPPs) Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185–186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic preference relations, 235–236 multiplicative preference relations, 235–236 Prioritised averaging operators (PA	fuzzy, 281–284	Probability theory, 6
Particles, 50 Partitional k-means clustering, 66–67 Percentage error metrics, 398 PIS. See Positive ideal solution (PIS) Pivot operation, 362 Planning, 421 analysis, 366–367, 369, 379 PM. See Project management (PM) PM—FCM model. See Project management—fuzzy c-means model (PM—FCM model) Positive ideal solution (PIS), 257–258 distances of weighted normalised collective evaluations to, 262 Post-mortem analysis, 416 POWA operators. See Prioritised OWA operators (POWA operators) PPPs. See Public—private partnerships (PPPs) Prediction modelling, 396–397 Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185–186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic preference relations, 235–236 multiplicative preference relations, 235–236 Prioritised averaging operators (PA	Pareto-optimal set, 49	Production risk for subsea option,
Particles, 50 Partitional k-means clustering, 66–67 Percentage error metrics, 398 PIS. See Positive ideal solution (PIS) Pivot operation, 362 Planning, 421 analysis, 366–367, 369, 379 PM. See Project management (PM) PM-FCM model. See Project management—fuzzy c-means model (PM-FCM model) Positive ideal solution (PIS), 257–258 distances of weighted normalised collective evaluations to, 262 Post-mortem analysis, 416 POWA operators. See Prioritised OWA operators (POWA operators) PPPs. See Public—private partnerships (PPPs) Prediction modelling, 396–397 Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185–186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic preference relations, 235–236 multiplicative preference relations Preference representation formats, 235–236 Prioritised averaging operators (PA	Particle swarm optimization (PSO),	315-318
Particles, 50 Partitional k-means clustering, 66–67 Percentage error metrics, 398 PIS. See Positive ideal solution (PIS) Pivot operation, 362 Planning, 421 analysis, 366–367, 369, 379 PM. See Project management (PM) PM-FCM model. See Project management—fuzzy c-means model (PM-FCM model) Positive ideal solution (PIS), 257–258 distances of weighted normalised collective evaluations to, 262 Post-mortem analysis, 416 POWA operators. See Prioritised OWA operators (POWA operators) PPPs. See Public—private partnerships (PPPs) Prediction modelling, 396–397 Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185–186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic preference relations, 235–236 multiplicative preference relations Preference representation formats, 235–236 Prioritised averaging operators (PA	42-43, 157	Productivity, 5, 9, 25, 28, 42, 65, 91, 93
Percentage error metrics, 398 PIS. See Positive ideal solution (PIS) Pivot operation, 362 Planning, 421 analysis, 366–367, 369, 379 PM. See Project management (PM) PM–FCM model. See Project management—fuzzy c-means model (PM–FCM model) Positive ideal solution (PIS), 257–258 distances of weighted normalised collective evaluations to, 262 Post-mortem analysis, 416 POWA operators. See Prioritised OWA operators (POWA operators) PPPs. See Public—private partnerships (PPPs) Prediction modelling, 396–397 Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185–186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic preference relations, 235 See also Fuzzy preference relations Preference representation formats, 235–236 Prioritised averaging operators (PA	Particles, 50	Project, 370–371
PIS. See Positive ideal solution (PIS) Pivot operation, 362 Planning, 421 analysis, 366–367, 369, 379 PM. See Project management (PM) PM—FCM model. See Project management—fuzzy c-means model (PM—FCM model) Positive ideal solution (PIS), 257–258 distances of weighted normalised collective evaluations to, 262 Post-mortem analysis, 416 POWA operators. See Prioritised OWA operators (POWA operators) PPPs. See Public—private partnerships (PPPs) Prediction modelling, 396–397 Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185–186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic preference relations, 235–236 multiplicative preference relations Preference representation formats, 235–236 Prioritised averaging operators (PA	Partitional <i>k</i> -means clustering, 66–67	complexity, 279, 293-295
Pivot operation, 362 Planning, 421 analysis, 366–367, 369, 379 PM. See Project management (PM) PM—FCM model. See Project management—fuzzy c-means model (PM—FCM model) Positive ideal solution (PIS), 257–258 distances of weighted normalised collective evaluations to, 262 Post-mortem analysis, 416 POWA operators. See Prioritised OWA operators (POWA operators) PPPs. See Public—private partnerships (PPPs) Prediction modelling, 396–397 Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185–186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic preference relations, 235–236 multiplicative preference relations, 266–267 dimension hierarchy, 371 performance, 168–169, 266, 270, 279–280, 293–295 PPP, 288 project-execution risks, 418 pursuit process, 415 risk analysis in, 305–310 Project management (PM), 374, 423–436 Project manag	Percentage error metrics, 398	framework for measuring, 288
Planning, 421 analysis, 366–367, 369, 379 PM. See Project management (PM) PM—FCM model. See Project management—fuzzy c-means model (PM—FCM model) Positive ideal solution (PIS), 257–258 distances of weighted normalised collective evaluations to, 262 Post-mortem analysis, 416 POWA operators. See Prioritised OWA operators (POWA operators) PPPs. See Public—private partnerships (PPPs) Prediction modelling, 396–397 Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185–186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic preference relations, 235 See also Fuzzy preference relations Preference representation formats, 235–236 Prioritised averaging operators (PA	PIS. See Positive ideal solution (PIS)	hierarchical structure, 288-289
analysis, 366–367, 369, 379 PM. See Project management (PM) PM—FCM model. See Project management—fuzzy c-means model (PM—FCM model) Positive ideal solution (PIS), 257–258 distances of weighted normalised collective evaluations to, 262 Post-mortem analysis, 416 POWA operators. See Prioritised OWA operators (POWA operators) PPPs. See Public—private partnerships (PPPs) Prediction modelling, 396–397 Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185–186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 Inguistic preference relations, 235 See also Fuzzy preference relations Preference representation formats, 235–236 Prioritised averaging operators (PA	Pivot operation, 362	delivery applications, 266–267
PM. See Project management (PM) PM—FCM model. See Project management—fuzzy c-means model (PM—FCM model) Positive ideal solution (PIS), 257—258 distances of weighted normalised collective evaluations to, 262 Post-mortem analysis, 416 POWA operators. See Prioritised OWA operators (POWA operators) PPPs. See Public—private partnerships (PPPs) Prediction modelling, 396—397 Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185—186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235—236, 249, 265 linguistic preference relations, 235 See also Fuzzy preference relations Preference representation formats, 235—236 Prioritised averaging operators (PA	Planning, 421	dimension hierarchy, 371
PM—FCM model. See Project management—fuzzy c-means model (PM—FCM model) Positive ideal solution (PIS), 257—258 distances of weighted normalised collective evaluations to, 262 Post-mortem analysis, 416 POWA operators. See Prioritised OWA operators (POWA operators) PPPs. See Public—private partnerships (PPPs) Prediction modelling, 396—397 Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185—186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235—236, 249, 265 linguistic preference relations, 235 See also Fuzzy preference relations Preference representation formats, 235—236 Prioritised averaging operators (PA	analysis, 366–367, 369, 379	performance, 168-169, 266, 270,
management—fuzzy c-means model (PM—FCM model) Positive ideal solution (PIS), 257–258 distances of weighted normalised collective evaluations to, 262 Post-mortem analysis, 416 POWA operators. See Prioritised OWA operators (POWA operators) PPPs. See Public—private partnerships (PPPs) Prediction modelling, 396–397 Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185–186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic preference relations, 235–236 multiplicative preference relations Preference representation formats, 235–236 Prioritised averaging operators (PA project-execution risks, 418 pursuit process, 415 risk analysis in, 305–310 Project management (PM), 374, 423–4436 Project management (PM), 374, 423–436 Project management (PM), 374, 423–436 Project management (PM), 374, 424 PROMETHEE. See Preference ranking organisation method for enrichment evaluation (PROMETHEE) Promoter, 374, 375 PSO. See Particle swarm optimization (PSO) Public—private partnerships (PPPs), 338 case study, 343–344 decision criteria for defining RM capability, 341, 342 fuzzy risk allocation methodology, 345–351 fuzzy synthetic evaluation and risk allocation, 342–343 practitioners' feedback on	PM. See Project management (PM)	279-280, 293-295
model (PM—FCM model) Positive ideal solution (PIS), 257–258 distances of weighted normalised collective evaluations to, 262 Post-mortem analysis, 416 POWA operators. See Prioritised OWA operators (POWA operators) PPPs. See Public—private partnerships (PPPs) Prediction modelling, 396–397 Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185–186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic preference relations, 235 See also Fuzzy preference relations Preference representation formats, 235–236 Project management (PM), 374, 423–436 Project management—fuzzy c-means model (PM—FCM model), 424 PROMETHEE. See Preference ranking organisation method for enrichment evaluation (PROMETHEE) Promoter, 374, 375 PSO. See Particle swarm optimization (PSO) Public—private partnerships (PPPs), 338 case study, 343–344 decision criteria for defining RM capability, 341, 342 fuzzy risk allocation methodology, 345–351 fuzzy synthetic evaluation and risk allocation, 342–343 practitioners' feedback on		PPP, 288
Positive ideal solution (PIS), 257–258 distances of weighted normalised collective evaluations to, 262 Post-mortem analysis, 416 POWA operators. See Prioritised OWA operators (POWA operators) PPPs. See Public—private partnerships (PPPs) Prediction modelling, 396–397 Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185–186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic preference relations, 235 See also Fuzzy preference relations Preference representation formats, 235–236 Project management (PM), 374, 423–436 Project management—fuzzy c-means model (PM–FCM model), 424 PROMETHEE. See Preference ranking organisation method for enrichment evaluation (PROMETHEE) Promoter, 374, 375 PSO. See Particle swarm optimization (PSO) Public—private partnerships (PPPs), 338 case study, 343–344 decision criteria for defining RM capability, 341, 342 fuzzy risk allocation methodology, 345–351 fuzzy synthetic evaluation and risk allocation, 342–343 practitioners' feedback on	management-fuzzy c-means	project-execution risks, 418
distances of weighted normalised	model (PM-FCM model)	
collective evaluations to, 262 Post-mortem analysis, 416 POWA operators. See Prioritised OWA operators (POWA operators) PPPs. See Public—private partnerships (PPPs) Prediction modelling, 396—397 Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185—186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235—236, 249, 265 Ilinguistic preference relations, 235—236 multiplicative preference relations Preference representation formats, 235—236 Project management—fuzzy c-means model (PM—FCM model), 424 PROMETHEE. See Preference ranking organisation method for enrichment evaluation (PROMETHEE) Promoter, 374, 375 PSO. See Particle swarm optimization (PSO) Public—private partnerships (PPPs), 338 case study, 343—344 decision criteria for defining RM capability, 341, 342 fuzzy risk allocation methodology, 345—351 fuzzy synthetic evaluation and risk allocation, 342—343 Prioritised averaging operators (PA		risk analysis in, 305-310
Post-mortem analysis, 416 POWA operators. See Prioritised OWA operators (POWA operators) PPPs. See Public—private partnerships (PPPs) Prediction modelling, 396—397 Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185—186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235—236, 249, 265 Inguistic preference relations, 235—236 multiplicative preference relations Preference representation formats, 235—236 Prioritised averaging operators (PA		Project management (PM), 374,
POWA operators. See Prioritised OWA operators (POWA operators) PPPs. See Public—private partnerships (PPPs) Prediction modelling, 396—397 Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185—186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235—236, 249, 265 Inguistic preference relations, 235—236 multiplicative preference relations Preference representation formats, 235—236 Prioritised averaging operators (PA model (PM-FCM model), 424 PROMETHEE. See Preference ranking organisation method for enrichment evaluation (PROMETHEE) Promoter, 374, 375 PSO. See Particle swarm optimization (PSO) Public—private partnerships (PPPs), 338 case study, 343—344 decision criteria for defining RM capability, 341, 342 fuzzy risk allocation methodology, 345—351 fuzzy synthetic evaluation and risk allocation, 342—343 practitioners' feedback on	collective evaluations to, 262	423-436
operators (POWA operators) PPPs. See Public—private partnerships (PPPs) Prediction modelling, 396–397 Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185–186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic preference relations, 235 See also Fuzzy preference relations Preference representation formats, 235–236 Prioritised averaging operators (PA PROMETHEE. See Preference ranking organisation method for enrichment evaluation (PROMETHEE) Promoter, 374, 375 PSO. See Particle swarm optimization (PSO) Public—private partnerships (PPPs), 338 case study, 343–344 decision criteria for defining RM capability, 341, 342 fuzzy risk allocation methodology, 345–351 fuzzy synthetic evaluation and risk allocation, 342–343 practitioners' feedback on		
PPPs. See Public—private partnerships (PPPs) Prediction modelling, 396–397 Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185–186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 Inquisitic preference relations, 235–236 multiplicative preference relations Preference representation formats, 235–236 Prioritised averaging operators (PA PROMETHEE. See Preference ranking organisation method for enrichment evaluation (PROMETHEE) Promoter, 374, 375 PSO. See Particle swarm optimization (PSO) Public—private partnerships (PPPs), 338 case study, 343–344 decision criteria for defining RM capability, 341, 342 fuzzy risk allocation methodology, 345–351 fuzzy synthetic evaluation and risk allocation, 342–343 practitioners' feedback on		· · · · · · · · · · · · · · · · · · ·
(PPPs) Prediction modelling, 396–397 Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185–186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 Inguistic preference relations, 235–236 multiplicative preference relations Preference representation formats, 235–236 Prioritised averaging operators (PA organisation method for enrichment evaluation (PROMETHEE) Promoter, 374, 375 PSO. See Particle swarm optimization (PSO) Public-private partnerships (PPPs), 338 case study, 343–344 decision criteria for defining RM capability, 341, 342 fuzzy risk allocation methodology, 345–351 fuzzy synthetic evaluation and risk allocation, 342–343 practitioners' feedback on	- · · · · · · · · · · · · · · · · · · ·	
Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185–186, 192 Preference relations, 192, 203, 209, 210, 235–236, 249, 265 Inguistic preference relations, 235–236 Preference representation formats, 235–236 Prioritised averaging operators (PA Preference IOWA (P-IOWA), 249 (PROMETHEE) Promoter, 374, 375 PSO. See Particle swarm optimization (PSO) Public-private partnerships (PPPs), 338 case study, 343–344 decision criteria for defining RM capability, 341, 342 fuzzy risk allocation methodology, 345–351 fuzzy synthetic evaluation and risk allocation, 342–343 practitioners' feedback on		
Preference IOWA (P-IOWA), 249 Preference ranking organisation method for enrichment evaluation (PROMETHEE), 7, 185–186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic preference relations, 235–236 multiplicative preference relations Preference representation formats, 235–236 Prioritised averaging operators (PA (PROMETHEE) Promoter, 374, 375 PSO. See Particle swarm optimization (PSO) Public-private partnerships (PPPs), 338 case study, 343–344 decision criteria for defining RM capability, 341, 342 fuzzy risk allocation methodology, 345–351 fuzzy synthetic evaluation and risk allocation, 342–343 practitioners' feedback on	` '	
Promoter, 374, 375 for enrichment evaluation (PROMETHEE), 7, 185–186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic preference relations, 235–236 multiplicative preference relations Preference representation formats, 235–236 Prioritised averaging operators (PA Promoter, 374, 375 PSO. See Particle swarm optimization (PSO) Public—private partnerships (PPPs), 338 case study, 343–344 decision criteria for defining RM capability, 341, 342 fuzzy risk allocation methodology, 345–351 fuzzy synthetic evaluation and risk allocation, 342–343 practitioners' feedback on		
for enrichment evaluation (PROMETHEE), 7, 185–186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic preference relations, 235–236 multiplicative preference relations Preference representation formats, 235–236 Prioritised averaging operators (PA PSO. See Particle swarm optimization (PSO) Public-private partnerships (PPPs), 338 case study, 343–344 decision criteria for defining RM capability, 341, 342 fuzzy risk allocation methodology, 345–351 fuzzy synthetic evaluation and risk allocation, 342–343 practitioners' feedback on		
(PROMETHEE), 7, 185–186, 192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic preference relations, 235–236 multiplicative preference relations, 235 See also Fuzzy preference relations Preference representation formats, 235–236 Prioritised averaging operators (PA Public-private partnerships (PPPs), 338 case study, 343–344 decision criteria for defining RM capability, 341, 342 fuzzy risk allocation methodology, 345–351 fuzzy synthetic evaluation and risk allocation, 342–343 practitioners' feedback on		
192 See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic preference relations, 235–236 multiplicative preference relations, 235 See also Fuzzy preference relations Preference representation formats, 235–236 Prioritised averaging operators (PA Public-private partnerships (PPPs), 338 case study, 343–344 decision criteria for defining RM capability, 341, 342 fuzzy risk allocation methodology, 345–351 fuzzy synthetic evaluation and risk allocation, 342–343 practitioners' feedback on		
See also T2FS-PROMETHEE Preference relations, 192, 203, 209, 210, 235-236, 249, 265 linguistic preference relations, 235-236 multiplicative preference relations, 235 See also Fuzzy preference relations Preference representation formats, 235-236 Prioritised averaging operators (PA 338 case study, 343-344 decision criteria for defining RM capability, 341, 342 fuzzy risk allocation methodology, 345-351 fuzzy synthetic evaluation and risk allocation, 342-343 practitioners' feedback on		
Preference relations, 192, 203, 209, 210, 235–236, 249, 265 linguistic preference relations, 235–236 multiplicative preference relations, 235 See also Fuzzy preference relations Preference representation formats, 235–236 Prioritised averaging operators (PA case study, 343–344 decision criteria for defining RM capability, 341, 342 fuzzy risk allocation methodology, 345–351 fuzzy synthetic evaluation and risk allocation, 342–343 practitioners' feedback on		
235–236, 249, 265 linguistic preference relations, 235–236 multiplicative preference relations, 235 See also Fuzzy preference relations Preference representation formats, 235–236 Prioritised averaging operators (PA decision criteria for defining RM capability, 341, 342 fuzzy risk allocation methodology, 345–351 fuzzy synthetic evaluation and risk allocation, 342–343 practitioners' feedback on		
linguistic preference relations, 235—236 multiplicative preference relations, 235 See also Fuzzy preference relations Preference representation formats, 235—236 Prioritised averaging operators (PA capability, 341, 342 fuzzy risk allocation methodology, 345—351 fuzzy synthetic evaluation and risk allocation, 342—343 practitioners' feedback on		
multiplicative preference relations, 235 See also Fuzzy preference relations Preference representation formats, 235–236 Prioritised averaging operators (PA fuzzy risk allocation methodology, 345–351 fuzzy synthetic evaluation and risk allocation, 342–343 practitioners' feedback on		
See also Fuzzy preference relations345-351Preference representation formats, 235-236fuzzy synthetic evaluation and risk allocation, 342-343Prioritised averaging operators (PApractitioners' feedback on		* · · · · · · · · · · · · · · · · · · ·
Preference representation formats, fuzzy synthetic evaluation and risk 235–236 allocation, 342–343 Prioritised averaging operators (PA practitioners' feedback on		
235–236 allocation, 342–343 Prioritised averaging operators (PA practitioners' feedback on	* *	
Prioritised averaging operators (PA practitioners' feedback on		
		· ·
operators), 252 methodology, 351		-
	operators), 252	methodology, 351

previous studies on risk allocation in,	Risk management (RM), 339
339-341	decision criteria for defining RM
projects, 288	capability, 341, 342
round three of Delphi survey for risk	fuzzy evaluation vector of RM
allocation, 344	capability, 348-349
two-round Delphi survey for risk	processes, 305
allocation decision criteria, 344	responsibility, 340
Pursuit review items, 418	RM. See Risk management (RM)
	RMSE. See Root mean square error
QFD. See Quality function deployment	(RMSE)
(QFD)	Robotic manipulator modelling of arm
Quadratic programming models, 234	gestures, 453
Qualitative criteria, 80	dynamic modelling of arm gestures,
Qualitative knowledge, 308	453-454
Quality function deployment (QFD),	EKF, 457–458
204	nonlinear system dynamics, 454–457
Quality management practices, 169	UKF, 458–460
Quantitative criteria, 80	Robust visual sensing technology, 452
Quantitative knowledge, 308	Roll-up operation, 360–361
	Root mean square error (RMSE), 64,
R-code, 400	466
for ANFIS, 410–411	Round three of Delphi survey for risk
RA. See Risk allocation (RA)	allocation, 344
Radial basis function (RBF), 394	
kernel, 401	<i>s</i> -norm, 14
Random index (RI), 284	algebraic sum, 15, 26
RBF. See Radial basis function (RBF)	bounded sum, 15
Real-world systems, 155	drastic union, 15
Reciprocal matrix, 22	max s-norm. See Standard union
Relative closeness index, 257–258	s-norm
RI. See Random index (RI)	standard union, 15
Risk, 305	See also Triangular-conorm
Risk allocation (RA), 338	(t-conorm)
decision, 350–351	SAA. See Scalable algorithm of
fuzzy synthetic evaluation and,	aggregation (SAA)
342-343	Safety analysis, 365–366
previous studies in PPPs, 339–341	Safety management, 374, 376
round three of Delphi survey, 344	SAM. See Similarity aggregation
two-round Delphi survey, 344	method (SAM)
Risk analysis, 305	Scalable algorithm of aggregation
in projects, 305	(SAA), 242–243
FL, 306–308	SD. See System dynamics (SD)
fuzzy AHP in, 308-310	Season, 369
fuzzy hybrid techniques, 308	Selection process, 233–234
MCS, 306	Sensitivity analysis, 405

Sensor fusion methods, 453, 456–457	Standards for technical condition
Sensor-based approaches, 366	evaluation of highway bridges
Serial correlation, 398	(STCEHB), 69
Service hierarchy, 377	Statistical methods, 22–23
Shannon entropy concept, 287	Statistical-based aggregation operators
Similarity aggregation method (SAM),	and algorithms, 242–243
232	STCEHB. See Standards for technical
Simple cause-and-effect analysis, 424	condition evaluation of
CM-FCM relationships for	highway bridges (STCEHB)
significant first-time events,	STFNs. See Standardised trapezoidal
428–430	fuzzy numbers (STFNs)
concepts in CM and PM, 425–426	Stocks, 153
linguistic variables in CM–FCM,	Strength Pareto evolutionary algorithm
427	(SPEA), 48–49
multiple scenarios, 431–432	Subjective reasoning, 5
Simulation	Subjective reasoning, 5 Subjective uncertainty, 30, 42, 43, 51,
limitations, 155–157	52, 63
techniques, 150, 151, 157–167	Subsea solution, 312, 313
in construction, 151–155	Subtractive clustering, 67
See also Fuzzy simulation	Success rate of learner phase (SRLP),
Simulink program, 470	42–43
Single subsea well, 312, 313	Success rate of teacher phase (SRTP),
Slice operation, 361	42–43
Smallest of maxima (SOM), 162	Sugeno fuzzy inference system, 394
Social criteria, 78–79	See also Fuzzy expert system (FES);
Soft computing techniques, 414–415,	Fuzzy inference system (FIS);
419	Fuzzy rule-based system
SOM. See Smallest of maxima (SOM)	(FRBS); Sugeno inference;
Spanish National Institute for Safety	Sugeno-type fuzzy inference
and Hygiene at Work	system
(INSHT), 379	Sugeno inference, 26, 27
SPEA. See Strength Pareto	See also Fuzzy expert system (FES);
evolutionary algorithm	Fuzzy inference system (FIS);
(SPEA)	Fuzzy rule-based system
Squared error metrics, 398	(FRBS); Sugeno fuzzy
SRLP. See Success rate of learner phase	inference system; Sugeno-type
(SRLP)	fuzzy inference system
SRTP. See Success rate of teacher phase	Sugeno-type fuzzy inference system,
(SRTP)	460-463, 470
Stakeholders, 390	See also Fuzzy expert system (FES);
Standard fuzzy arithmetic, 113	Fuzzy inference system (FIS);
implementation, 113-116, 121-123	Fuzzy rule-based system
Standard intersection <i>t</i> -norm, 14	(FRBS); Sugeno inference;
Standardised trapezoidal fuzzy numbers	Sugeno fuzzy inference system
(STFNs), 265	Supplier selection, 78
` ''	* * * * * * * * * * * * * * * * * * *

Support vector machine model (SVM	Tender price index forecasting, 390,
model), 391, 394, 400-401	392, 396
Symbolic representation, 423	univariate modelling techniques
System dynamics (SD), 83-84, 152-153	application in,
Systematic literature review	391-393
methodology, 39-41	TFLPWA operator. See Trapezoidal
	fuzzy linguistic prioritised
t-norm	weighted average operator
algebraic product, 124-131	(TFLPWA operator)
Archimedean, 117–118	TFN. See Triangular fuzzy numbers
bounded difference, 131–136	(TFNs)
drastic product, 137–141	Theil's inequality coefficient, 397
Lukasiewicz t-norm. See Bounded	THFSs. See Typical hesitant FSs
difference <i>t</i> -norm	(THFSs)
min t-norm. See Standard	Time dimension, 369–374
intersection t-norm	Time paradox, 89
operator, 117	Time series
standard intersection, 116	forecasting, 392
T2FS-based MCDM methods and	modelling techniques, 390, 398
applications, 214–220	Time-cost optimisation model, 308
analytic hierarchy process, 215–216	TLBO. See Teaching-learning-based
PROMETHEE, 219	optimization (TLBO)
T2FS-MCDM method applications,	TnFSs. See Type-n FSs (TnFSs)
219-220	Tolerance, 321
technique for order of preference,	factor, 310, 324
216-218	TOPSIS. See Technique for order of
weighted product method, 215	preference by similarity to
weighted sum method, 214-215	ideal solution (TOPSIS)
T2FS-PROMETHEE, 179, 220	Traditional human-centred
T2FS-TOPSIS, 179, 218	decision-making process,
trapezoidal, 216-217	367
T2FSs. See Type-2 fuzzy sets (T2FSs)	Trapezoidal fuzzy linguistic prioritised
Takagi-Sugeno-Kang-type fuzzy	weighted average operator
inference system. See Sugeno-	(TFLPWA operator), 252
type fuzzy inference system	Trapezoidal fuzzy number, 19
TBM. See Tunnel boring machine	Trapezoidal membership function, 10
(TBM)	Triangular fuzzy membership function
Teaching-learning-based optimization	264
(TLBO), 42–43	Triangular fuzzy numbers (TFNs), 81,
Team agent, 166	120, 137, 193, 283
Technique for order of preference by	Triangular-conorm (t-conorm). See
similarity to ideal solution	s-norm
(TOPSIS), 70, 186, 190-191	Triangular-norm operators, 14
See also T2FS-TOPSIS	Trym field, 311
Tender price index, 390, 402	Tunnel boring machine (TBM), 89

Two-round Delphi survey for risk	Vector3D class, 464
allocation decision criteria,	Vertical methods, 20–21
344	VFSs. See Vague funny sets (VFSs)
Two-stage classification approach, 452	Virtual designs, 366
Type-2 fuzzy sets (T2FSs), 192–193,	VIsekriterijumska optimizacija i
195–197	KOmpromisno Resenje
See also T2FS-based MCDM	(VIKOR), 70
methods and applications	fuzzy, 82–83
Type-n FSs (TnFSs), 192–193	
Typical hesitant FSs (THFSs), 195	WAA. See Weighted arithmetic
	averaging (WAA)
UKF. See Unscented Kalman filter (UKF)	WBS. See Work breakdown structure (WBS)
UMF. See Upper membership function	Weigh-in-motion (WIM), 68
(UMF)	Weighted arithmetic averaging (WAA),
UML. See Unified modelling language	242–243
(UML) Unanimity. See Idempotence	Weighted geometric averaging (WGA), 242–243
Uncertainty	Weighted mean model, 349
ambiguity, 5, 29–30, 82, 206, 214,	Weighted normalised fuzzy decision
231, 305	matrix (WNFDM), 269
non-probabilistic, 30, 155	Weighted sum method (WSM),
probabilistic, 84, 88, 94, 156–157	188–189
random, 48, 51, 95, 155	Weighting function set of decision
subjectivity, 5, 29–30, 82	criteria, 346
vagueness, 5, 29–30, 82, 206, 305	WGA. See Weighted geometric
Unified modelling language (UML), 164	averaging (WGA)
Union of fuzzy sets, 18	WIM. See Weigh-in-motion (WIM)
Union operations, 14	WNFDM. See Weighted normalised
Univariate models, 391, 393	fuzzy decision matrix
application, 398–401	(WNFDM)
modelling techniques, 393	Work accidents, 379
ANFIS, 394–395	datacube, 368
application in tender price index	Work breakdown structure (WBS),
forecasting, 391–393	372–374
Box–Jenkins model, 393	Work development, 368, 379, 380
SVM model, 394	Worker dimension hierarchy,
Unscented Kalman filter (UKF), 456,	377–378
458-460	Worker's commitment, 150
Upper membership function (UMF), 196	Workplace safety, 365
Urbanisation process, 185	WSM. See Weighted sum method
1 7	(WSM)
Vague funny sets (VFSs), 193	,
Vector diagram for angle calculation,	Zero-order Sugeno fuzzy model,
465	463