Search results

1 – 10 of 88
Open Access
Article
Publication date: 17 August 2021

Emanuele Quaranta, Toni Pujol and Maria Carmela Grano

The paper presents a techno-economic analysis of the electromechanical equipment of traditional vertical axis water mills (VAWMs) to help investors, mill owners and engineers to…

1878

Abstract

Purpose

The paper presents a techno-economic analysis of the electromechanical equipment of traditional vertical axis water mills (VAWMs) to help investors, mill owners and engineers to preliminary estimate related benefits and costs of a VAWM repowering.

Design/methodology/approach

Two sustainable repowering solutions were examined with the additional aim to preserve the original status and aesthetics of a VAWM: the use of a vertical axis water wheel (VAWW) and a vertical axis impulse turbine. The analysis was applied to a database of 714 VAWMs in Basilicata (Italy), with known head and flow.

Findings

Expeditious equations were proposed for both solutions to determine: (1) a suitable diameter as a function of the flow rate; (2) the costs of the electromechanical equipment; (3) achievable power. The common operating hydraulic range of a VAWM (head and flow) was also identified. Reality checks on the obtained results are shown, in particular by examining two Spanish case studies and the available literature. The power generated by the impulse turbine (Turgo type) is twice that of a VAWW, but it is one order of magnitude more expensive. Therefore, the impulse turbine should be used for higher power requirements (>3 kW), or when the electricity is delivered to the grid, maximizing the long-term profit.

Originality/value

Since there is not enough evidence about the achievable performance and cost of a VAWM repowering, this work provides expeditious tools for their evaluation.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. 13 no. 2
Type: Research Article
ISSN: 2044-1266

Keywords

Open Access
Article
Publication date: 24 August 2022

Ethan Pancer, Matthew Philp and Theodore J. Noseworthy

Recent research has demonstrated that people are more likely to engage with fatty food content online. One way health advocates might facilitate engagement with healthier…

4982

Abstract

Purpose

Recent research has demonstrated that people are more likely to engage with fatty food content online. One way health advocates might facilitate engagement with healthier, calorie-light foods is to alter how people process food media. This research paper aims to investigate the moderating role of viewer mindset on consumer responses to digital food media.

Design/methodology/approach

Two experiments were conducted by manipulating the caloric density of food media content and/or one’s mindset before viewing.

Findings

Results show that the relationship between nutrition and engagement is moderated by consumer mindset, where activating a more calculative mindset before exposure can elevate social media engagement for calorie-light food media content.

Research limitations/implications

These findings contribute to the domain of obesogenic digital environments and the role of nutrition in consuming food media. By examining how mindsets interact with affective evaluations, this work demonstrates that a default mindset based on instinct can be shifted and thus alter subsequent behavioral intentions.

Practical implications

This work provides insight into what can boost the visibility and engagement of healthy food content on social media. Marketers can help promote healthier food media by cueing consumers to think more deliberately before exposure.

Originality/value

This research builds on recent work by demonstrating how to boost engagement with healthy foods on social media by cueing a more thoughtful mindset.

Details

European Journal of Marketing, vol. 56 no. 11
Type: Research Article
ISSN: 0309-0566

Keywords

Open Access
Article
Publication date: 8 August 2021

Suzanna Opree, Moniek Buijzen and Eva van Reijmersdal

The aim of this study is to determine which of previously used survey measures can be considered the most appropriate to assess children’s advertising exposure. First, three…

2079

Abstract

Purpose

The aim of this study is to determine which of previously used survey measures can be considered the most appropriate to assess children’s advertising exposure. First, three levels of content specificity for assessing children’s exposure to advertising were distinguished as follows: exposure to the medium, exposure to broad content and exposure to specific (i.e. commercial) content. Second, using longitudinal data from 165 children between 8 and 11 years old, the test-retest reliability and content validity of survey measures from all three levels were examined.

Design/methodology/approach

Due to societal concerns about the effects of advertising on children’s well-being, research into this topic is expanding. To enhance knowledge accumulation and bring uniformity to the field, a validated standard survey measure of advertising exposure is needed. The aim of this study is to provide such measures for television and internet advertising.

Findings

The findings suggest that all measures provided solid estimates for children’s television and internet advertising exposure. Yet, due to minor differences in reliability and validity, it may be concluded that television advertising exposure can best be measured by asking children how often they watch certain popular (commercial) television networks, either weighting or not weighting for advertising density. Internet advertising exposure can best be measured by asking children how often they use the internet or how often they visit certain popular websites, weighting for advertising density.

Originality/value

The current measures for children’s advertising exposure through traditional media can easily be adapted to fit new media.

Details

Young Consumers, vol. 22 no. 4
Type: Research Article
ISSN: 1747-3616

Keywords

Open Access
Article
Publication date: 12 May 2020

Tomasz Matusiak, Krzysztof Swiderski, Jan Macioszczyk, Piotr Jamroz, Pawel Pohl and Leszek Golonka

The purpose of this paper is to present a study on miniaturized instruments for analytical chemistry with a microplasma as the excitation source.

Abstract

Purpose

The purpose of this paper is to present a study on miniaturized instruments for analytical chemistry with a microplasma as the excitation source.

Design/methodology/approach

The atmospheric pressure glow microdischarge could be ignited inside a ceramic structure between a solid anode and a liquid cathode. As a result of the cathode sputtering of the solution, it was possible to determine its chemical composition by analyzing the emission spectra of the discharge. Cathodes with microfluidic channels and two types of anodes were constructed. Both types were tested through experimentation. Impact of the electrodes geometry on the discharge was established. A cathode aperture of various sizes and anodes made from different materials were used.

Findings

The spectroscopic properties of the discharge and its usefulness in the analysis depended on the ceramic structure. The surface area of the cathode aperture and the flow rate of the solution influence on the detection limits (DLs) of Zn and Cd.

Originality/value

Constructed ceramic structures were able to excite elements and their laboratory-size systems. During the experiments, Zn and Cd were detected with DLs 0.024 and 0.053 mg/L, respectively.

Details

Sensor Review, vol. 40 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 3 September 2020

Zack Walsh, Jessica Böhme, Brooke D. Lavelle and Christine Wamsler

This paper aims to increase related knowledge across personal, social and ecological dimensions of sustainability and how it can be applied to support transformative learning.

4226

Abstract

Purpose

This paper aims to increase related knowledge across personal, social and ecological dimensions of sustainability and how it can be applied to support transformative learning.

Design/methodology/approach

The paper provides a reflexive case study of the design, content and impact of a course on eco-justice that integrates relational learning with an equity and justice lens. The reflexive case study provides a critical, exploratory self-assessment, including interviews, group discussions and surveys with key stakeholders and course participants.

Findings

The results show how relational approaches can support transformative learning for sustainability and provide concrete practices, pathways and recommendations for curricula development that other universities/training institutions could follow or learn from.

Originality/value

Sustainability research, practice and education generally focuses on structural or systemic factors of transformation (e.g. technology, governance and policy) without due consideration as to how institutions and systems are shaping and shaped by the transformation of personal agency and subjectivity. This presents a vast untapped and under-studied potential for addressing deep leverage points for change by using a relational approach to link personal, societal and ecological transformations for sustainability.

Details

International Journal of Sustainability in Higher Education, vol. 21 no. 7
Type: Research Article
ISSN: 1467-6370

Keywords

Open Access
Article
Publication date: 2 March 2023

Kartik Venkatraman, Stéphane Moreau, Julien Christophe and Christophe Schram

The purpose of the paper is to predict the aerodynamic performance of a complete scale model H-Darrieus vertical axis wind turbine (VAWT) with end plates at different operating…

1426

Abstract

Purpose

The purpose of the paper is to predict the aerodynamic performance of a complete scale model H-Darrieus vertical axis wind turbine (VAWT) with end plates at different operating conditions. This paper aims at understanding the flow physics around a model VAWT for three different tip speed ratios corresponding to three different flow regimes.

Design/methodology/approach

This study achieves a first three-dimensional hybrid lattice Boltzmann method/very large eddy simulation (LBM-VLES) model for a complete scaled model VAWT with end plates and mast using the solver PowerFLOW. The power curve predicted from the numerical simulations is compared with the experimental data collected at Erlangen University. This study highlights the complexity of the turbulent flow features that are seen at three different operational regimes of the turbine using instantaneous flow structures, mean velocity, pressure iso-contours, blade loading and skin friction plots.

Findings

The power curve predicted using the LBM-VLES approach and setup provides a good overall match with the experimental power curve, with the peak and drop after the operational point being captured. Variable turbulent flow structures are seen over the azimuthal revolution that depends on the tip speed ratio (TSR). Significant dynamic stall structures are seen in the upwind phase and at the end of the downwind phase of rotation in the deep stall regime. Strong blade wake interactions and turbulent flow structures are seen inside the rotor at higher TSRs.

Research limitations/implications

The computational cost and time for such high-fidelity simulations using the LBM-VLES remains expensive. Each simulation requires around a week using supercomputing facilities. Further studies need to be performed to improve analytical VAWT models using inputs/calibration from high fidelity simulation databases. As a future work, the impact of turbulent and nonuniform inflow conditions that are more representative of a typical urban environment also needs to be investigated.

Practical implications

The LBM methodology is shown to be a reliable approach for VAWT power prediction. Dynamic stall and blade wake interactions reduce the aerodynamic performance of a VAWT. An ideal operation close to the peak of the power curve should be favored based on the local wind resource, as this point exhibits a smoother variation of forces improving operational performance. The 3D flow features also exhibit a significant wake asymmetry that could impact the optimal layout of VAWT clusters to increase their power density. The present work also highlights the importance of 3D simulations of the complete model including the support structures such as end plates and mast.

Social implications

Accurate predictions of power performance for Darrieus VAWTs could help in better siting of wind turbines thus improving return of investment and reducing levelized cost of energy. It could promote the development of onsite electricity generation, especially for industrial sites/urban areas and renew interest for VAWT wind farms.

Originality/value

A first high-fidelity simulation of a complete VAWT with end plates and supporting structures has been performed using the LBM approach and compared with experimental data. The 3D flow physics has been analyzed at different operating regimes of the turbine. These physical insights and prediction capabilities of this approach could be useful for commercial VAWT manufacturers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 30 July 2021

Michał Ciałkowski, Aleksander Olejnik, Magda Joachimiak, Krzysztof Grysa and Andrzej Frąckowiak

To reduce the heat load of a gas turbine blade, its surface is covered with an outer layer of ceramics with high thermal resistance. The purpose of this paper is the selection of…

Abstract

Purpose

To reduce the heat load of a gas turbine blade, its surface is covered with an outer layer of ceramics with high thermal resistance. The purpose of this paper is the selection of ceramics with such a low heat conduction coefficient and thickness, so that the permissible metal temperature is not exceeded on the metal-ceramics interface due to the loss ofmechanical properties.

Design/methodology/approach

Therefore, for given temperature changes over time on the metal-ceramics interface, temperature changes over time on the inner side of the blade and the assumed initial temperature, the temperature change over time on the outer surface of the ceramics should be determined. The problem presented in this way is a Cauchy type problem. When analyzing the problem, it is taken into account that thermophysical properties of metal and ceramics may depend on temperature. Due to the thin layer of ceramics in relation to the wall thickness, the problem is considered in the area in the flat layer. Thus, a one-dimensional non-stationary heat flow is considered.

Findings

The range of stability of the Cauchy problem as a function of time step, thickness of ceramics and thermophysical properties of metal and ceramics are examined. The numerical computations also involved the influence of disturbances in the temperature on metal-ceramics interface on the solution to the inverse problem.

Practical implications

The computational model can be used to analyze the heat flow in gas turbine blades with thermal barrier.

Originality/value

A number of inverse problems of the type considered in the paper are presented in the literature. Inverse problems, especially those Cauchy-type, are ill-conditioned numerically, which means that a small change in the inputs may result in significant errors of the solution. In such a case, regularization of the inverse problem is needed. However, the Cauchy problem presented in the paper does not require regularization.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 19 March 2021

Dandan Qiu, Lei Luo, Zhiqi Zhao, Songtao Wang, Zhongqi Wang and Bengt Ake Sunden

The purpose of this study is to investigate the effects of film holes’ arrangements and jet Reynolds number on flow structure and heat transfer characteristics of jet impingement…

1083

Abstract

Purpose

The purpose of this study is to investigate the effects of film holes’ arrangements and jet Reynolds number on flow structure and heat transfer characteristics of jet impingement conjugated with film cooling in a semicylinder double wall channel.

Design/methodology/approach

Numerical simulations are used in this research. Streamlines on different sections, skin-friction lines, velocity, wall shear stress and turbulent kinetic energy contours near the concave target wall and vortices in the double channel are presented. Local Nusselt number contours and surface averaged Nusselt numbers are also obtained. Topology analysis is applied to further understand the fluid flow and is used in analyzing the heat transfer characteristics.

Findings

It is found that the arrangement of side films positioned far from the center jets helps to enhance the flow disturbance and heat transfer behind the film holes. The heat transfer uniformity for the case of 55° films arrangement angle is most improved and the thermal performance is the highest in this study.

Originality/value

The film holes’ arrangements effects on fluid flow and heat transfer in an impingement cooled concave channel are conducted. The flow structures in the channel and flow characteristics near target by topology pictures are first obtained for the confined film cooled impingement cases. The heat transfer distributions are analyzed with the flow characteristics. The highest heat transfer uniformity and thermal performance situation is obtained in present work.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 14 June 2021

Vennan Sibanda, Khumbulani Mpofu and John Trimble

In manufacturing, dedicated machine tools and flexible machine tools are failing to satisfy the ever-changing manufacturing demands of short life cycles and dynamic nature of…

1922

Abstract

Purpose

In manufacturing, dedicated machine tools and flexible machine tools are failing to satisfy the ever-changing manufacturing demands of short life cycles and dynamic nature of products. These machines are limited when new product designs are introduced. The solution lies in developing responsive machines that can be adjusted or be changed functionally when these change requirements arise. These machines are reconfigurable machines which are becoming the new focus, as they rapidly respond to product variety and volume changes. A sheet metal working machine known as a reconfigurable guillotine shear and bending press machine (RGS&BPM) has been developed. The purpose of this paper is to present a methodology, function-oriented design approach (FODA), which was developed for the design of the RGS&BPM.

Design/methodology/approach

The design of the machine is based on the six principles of reconfigurable manufacturing systems (RMSs), namely, modularity, scalability integrability, convertibility, diagnosability and customisability. The methodology seeks to optimise the design process of the RGS&BPM through a design of modules that make up the machine, enable its conversion and reconfiguration. The FODA is focussed on function identification to select the operational function required. Two main functions are recognised for the machine, these being cutting and bending; hence, the design revolves around these two and reconfigurability.

Findings

The developed design methodology was tested in the design of a prototype for the reconfigurable guillotine shear and bending press machine. The prototype is currently being manufactured and will be subjected to functional tests once completed. This paper is being presented not only to present the methodology by to show and highlight its practical applicability, as the prototype manufacturers have been enthusiastic about this new approach.

Research limitations/implications

The research was limited to the design methodology for the RGS&BPM, the machine which has been designed to completion using this methodology, with prototype being manufactured.

Practical implications

This study presents critical steps and considerations in the development of reconfigurable machines. The main thrust being to explore the best possibility of developing the machines with dual functionality that will assist in availing the technology to manufacturer. As the machine has been development, the success of the design can be directly attributed to the FODA methodology, among other contributing factors. It also highlights the significance of the principles of RMS in reconfigurable machine design.

Social implications

The RGS&BM machine is an answer for the small-to-medium enterprises (SMEs), as the machine replaces two machines with one, and the methodology ensures its affordable design. It contributes immensely to the machine availability by eliminating trial and error approaches.

Originality/value

This study presents a new approach to the design of reconfigurable dual machines using principles of RMS. As the targeted market is the SME, it is not limited to that as any entrepreneur may use the machine to their advantage. The design methodology presented contributes to the body of knowledge in dual reconfigurable machine tool design.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Access

Only Open Access

Year

All dates (88)

Content type

1 – 10 of 88