Search results

1 – 10 of over 10000
Article
Publication date: 7 May 2021

Satish Geeri and Aditya Kolakoti

The purpose of the present work is to fabricate composite with strong absorbing nature and with more strength. The usage of wireless communication is increasing day by day…

Abstract

Purpose

The purpose of the present work is to fabricate composite with strong absorbing nature and with more strength. The usage of wireless communication is increasing day by day, electromagnetic absorbing material is required to reduce this pollution. In the present experimental investigation, composites were fabricated for zero and 45° fiber orientation and as a filler material of Multiwall Carbon Nanotubes (MWCNTs) for the proposed percentage in the composites. Microwave absorbing properties were investigated for both perfect electric conductor (PEC)-backed composites and without PEC-backed composites.

Design/methodology/approach

The electromagnetic absorbing performance was analyzed based on complex permeability, complex permittivity, dielectric tangent and magnetic tangent losses. The experimentation was done by Vector Network Analyzer in the frequency range of 8.2 to 12.4 GHz by X-band. The surface morphological study was done. The mechanical and thermal properties are also investigated for these composites.

Findings

By investigating the experimental values, the induced percentage of MWCNTs and PEC of composites affects the electromagnetic and microwave absorption properties of the composites. The microwave absorption properties improved when the composites were able to absorb wide bandwidth and low reflection loss. The best results are obtained for PEC-backed composites for 5%, which is about −43.56 dB at 11.1 GHz compared to without PEC-backed composites. The reflection loss is developed by the dielectric loss initiated from MWCNTs and by PEC.

Originality/value

To the best of the authors’ knowledge, no work was reported on hand lay-up method and PEC-backed composites in electromagnetic absorption properties with regression analysis.

Details

World Journal of Engineering, vol. 18 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 December 1998

C.G.L. Khoo and Johan Liu

Three common glob top encapsulant materials, two epoxy‐based, and one silicone‐based, were characterized prior to temperature cycling using differential scanning calorimetry…

1308

Abstract

Three common glob top encapsulant materials, two epoxy‐based, and one silicone‐based, were characterized prior to temperature cycling using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical spectroscopy (DMS), gas chromatograph‐mass spectrometry (GC‐MS), and Fourier transform infrared spectroscopy (FTIR). After cycling between ‐55 to +125°C, for 1,000 cycles, the same samples were again analysed using DMS and FTIR. For the epoxy‐based samples, the DMS results indicated that temperature cycling in a humid environment can seriously affect the physical and mechanical properties of these samples. FTIR data also indicated that the molecular changes in the epoxy‐based samples appeared quite extensive after cycling, indicating a high level of degradation on the molecular scale. On the other hand, the silicon‐based glob top appeared to have survived the temperature cycling quite well.

Details

Circuit World, vol. 24 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 26 July 2021

Deepinder Singh Wadhwa, Praveen Kumar Malik and Jaspal Singh Khinda

A compact low-cost antenna structure is proposed to augment the impedance-bandwidth in mm-wave range. Beside it, the paper also aimed to enhance high gain for n260 and n261-bands…

Abstract

Purpose

A compact low-cost antenna structure is proposed to augment the impedance-bandwidth in mm-wave range. Beside it, the paper also aimed to enhance high gain for n260 and n261-bands, suitable for futuristic communication systems.

Design/methodology/approach

Design consists of radiating patch and a partial ground plane with semi-circle arc for smooth flow of current. The lower corners of patch are gradually clipped away to make the patch nearly elliptical. Further, two tilted slots at an angle α = 15° are etched at the edges of the patch to augment bandwidth for mm-wave range. These slots divert the periphery current of semi elliptical patch towards center portion of antenna which ensures the participation in radiation of central portion of patch. The upper corners are also clipped away to limit the copper losses and smoothly flow of current. The proposed antenna is designed using HFSS and it is structured on inexpensive FR4 substrate of size 27.5 × 20 mm2.

Findings

It supports enormous −10 dB bandwidth of 5.86–40GHz (148.89%) even though use of high loss-tangent material and high gain for 28 GHz (27.50–28.35 GHz) n261–band and 37 GHz (37–38.6 GHz) and 39 GHz (38.6–40GHz) n260–bands with a peak-gain of 8.76 dBi, 10.8 dBi and 9.92 dBi, respectively.

Originality/value

The proposed methodology of design is very useful to enhance impedance bandwidth to cover all C–, X–, Ku–, K– and Ka–band even though use of low cost material with high loss tangent. In recent literature, the designs were implemented with a costly material and having very low loss tangent and covers partial suggest bands.

Details

World Journal of Engineering, vol. 19 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 December 2017

Georgios Giannoukos, Mart Min and Toomas Rang

This paper aims to give a brief overview of dielectric properties, relative complex permittivity and its dependence on frequency. The significance of different approaches to…

1202

Abstract

Purpose

This paper aims to give a brief overview of dielectric properties, relative complex permittivity and its dependence on frequency. The significance of different approaches to complex permittivity is also discussed.

Design/methodology/approach

The different mechanisms of polarization are then presented. Dielectric measurements are given, and an RC parallel-equivalent circuit is used to simulate a parallel plate capacitor, and the way in which the impedance of the circuits is affected by frequency is illustrated in their respective diagrams. The way in which dielectric properties change with time is also discussed.

Findings

The goal of this paper is to give an overview of the characteristics of the dielectrics and how frequency affects the relative complex permittivity and to present different approaches to and equations for the relative complex permittivity, such as that of Debye, Cole–Cole, Cole–Davidson and Havriliak–Negami. In addition, three mechanisms of polarization, namely, electronic, atomic and bipolar, are presented. The most common dielectric characterization device, a capacitor with parallel plates between which the dielectric material under study is located, is also discussed. Ohmic and dielectric losses of a non-ideal capacitor are accounted for. Furthermore, this paper studies the equivalent circuits of a non-ideal parallel plate capacitor, those being a resistor and an ideal capacitor connected either in series or in parallel.

Originality/value

Finally, dielectric responses to both time and to stepwise excitation are given.

Details

World Journal of Engineering, vol. 14 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 February 2008

M.A. Delgado, J.M. Franco and E. Kuhn

The aim of this work is to investigate the relationship among rheology, tribology and traditional standardized technological parameters of lithium lubricating greases.

Abstract

Purpose

The aim of this work is to investigate the relationship among rheology, tribology and traditional standardized technological parameters of lithium lubricating greases.

Design/methodology/approach

Lubricating greases having the same composition but differing in processing protocols have been manufactured and characterized in order to isolate the rheological behaviour from the formulation.

Findings

Some successful empirical correlations between rheological (viscous and viscoelastic) and technological standardized parameters, with the friction factor obtained from a ball‐disc tribometer, have been established in order to elucidate the role of the rheological behaviour of lubricating greases on the friction process. In addition to this, an energetic evaluation of the structural degradation of greases during the friction process has been carried out by performing stress‐growth experiments. Thus, the storage energy density, which is related to the grease capacity to accumulate energy in the elastic deformation, and the limiting energy density, which represents the dissipation of energy in the flow process, have been satisfactorily correlated with the friction factor.

Research limitations/implications

The complex rheological behaviour of lubricating greases, the extreme deformations and the high‐shear stresses resulting in a tribological contact imply that it is difficult to develop a model to describe their behaviour in an elastohydrodynamic lubricating contact.

Originality/value

This paper provides a resource of practical data to be applied in tribological systems.

Details

Industrial Lubrication and Tribology, vol. 60 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 27 April 2020

Harkamal Deep Singh and Jashandeep Singh

As a result of the deregulations in the power system networks, diverse beneficial operations have been competing to optimize their operational costs and improve the consistency of…

92

Abstract

Purpose

As a result of the deregulations in the power system networks, diverse beneficial operations have been competing to optimize their operational costs and improve the consistency of their electrical infrastructure. Having certain and comprehensive state assessment of the electrical equipment helps the assortment of the suitable maintenance plan. Hence, the insulation condition monitoring and diagnostic techniques for the reliable and economic transformers are necessary to accomplish a comprehensive and proficient transformer condition assessment.

Design/methodology/approach

The main intent of this paper is to develop a new prediction model for the aging assessment of power transformer insulation oil. The data pertaining to power transformer insulation oil have been already collected using 20 working power transformers of 16-20 MVA operated at various substations in Punjab, India. It includes various parameters associated with the transformer such as breakdown voltage, moisture, resistivity, tan δ, interfacial tension and flashpoint. These data are given as input for predicting the age of the insulation oil. The proposed aging assessment model deploys a hybrid classifier model by merging the neural network (NN) and deep belief network (DBN). As the main contribution of this paper, the training algorithm of both NN and DBN is replaced by the modified lion algorithm (LA) named as a randomly modified lion algorithm (RM-LA) to reduce the error difference between the predicted and actual outcomes. Finally, the comparative analysis of different prediction models with respect to error measures proves the efficiency of the proposed model.

Findings

For the Transformer 2, root mean square error (RMSE) of the developed RM-LA-NN + DBN was 83.2, 92.5, 40.4, 57.4, 93.9 and 72 per cent improved than NN + DBN, PSO, FF, CSA, PS-CSA and LA-NN + DBN, respectively. Moreover, the RMSE of the suggested RM-LA-NN + DBN was 97.4 per cent superior to DBN + NN, 96.9 per cent superior to PSO, 81.4 per cent superior to FF, 93.2 per cent superior to CSA, 49.6 per cent superior to PS-CSA and 36.6 per cent superior to LA-based NN + DBN, respectively, for the Transformer 13.

Originality/value

This paper presents a new model for the aging assessment of transformer insulation oil using RM-LA-based DBN + NN. This is the first work uses RM-LA-based optimization for aging assessment in power transformation insulation oil.

Article
Publication date: 1 February 1988

C.A. Smith

Water absorption is a serious problem in all polymeric materials, including the glass fibre‐epoxide resin laminates used in printed circuit board manufacture. This paper describes…

Abstract

Water absorption is a serious problem in all polymeric materials, including the glass fibre‐epoxide resin laminates used in printed circuit board manufacture. This paper describes experiments to determine the level of water absorption in these materials under different conditions of relative humidity and temperature using thermogravimetric analysis.

Details

Circuit World, vol. 14 no. 3
Type: Research Article
ISSN: 0305-6120

Article
Publication date: 1 February 1988

J.C. Curtis, K.J. Lodge and D.J. Pedder

This paper looks at the implications of increases in system speed and density for the interconnection system, noting particularly the increased requirements placed on the…

Abstract

This paper looks at the implications of increases in system speed and density for the interconnection system, noting particularly the increased requirements placed on the substrate and tracking system. It reviews the properties required of substrates and the limitations derived from the materials used and the processes needed to put tracks on them. Those areas where these requirements are in conflict are highlighted, including such low technology problems as the limited size availability of substrate prepregs which may limit the tracking density achievable on the newer, more advanced low dielectric materials. Some limitations and trade‐offs are identified.

Details

Circuit World, vol. 14 no. 3
Type: Research Article
ISSN: 0305-6120

Open Access
Article
Publication date: 13 November 2023

Ming Gao, Anhui Pan, Yi Huang, Jiaqi Wang, Yan Zhang, Xiao Xie, Huanre Han and Yinghua Jia

The type 120 emergency valve is an essential braking component of railway freight trains, but corresponding diaphragms consisting of natural rubber (NR) and chloroprene rubber…

Abstract

Purpose

The type 120 emergency valve is an essential braking component of railway freight trains, but corresponding diaphragms consisting of natural rubber (NR) and chloroprene rubber (CR) exhibit insufficient aging resistance and low-temperature resistance, respectively. In order to develop type 120 emergency valve rubber diaphragms with long-life and high-performance, low-temperatureresistant CR and NR were processed.

Design/methodology/approach

The physical properties of the low-temperature-resistant CR and NR were tested by low-temperature stretching, dynamic mechanical analysis, differential scanning calorimetry and thermogravimetric analysis. Single-valve and single-vehicle tests of type 120 emergency valves were carried out for emergency diaphragms consisting of NR and CR.

Findings

The low-temperature-resistant CR and NR exhibited excellent physical properties. The elasticity and low-temperature resistance of NR were superior to those of CR, whereas the mechanical properties of the two rubbers were similar in the temperature range of 0 °C–150 °C. The NR and CR emergency diaphragms met the requirements of the single-valve test. In the low-temperature single-vehicle test, only the low-temperature sensitivity test of the NR emergency diaphragm met the requirements.

Originality/value

The innovation of this study is that it provides valuable data and experience for future development of type 120 valve rubber diaphragms.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 17 May 2021

Akash K. Gupta, Rahul Yadav, Malay K. Das and Pradipta K. Panigrahi

This paper aims to present the implementation of a multi-layer radiation propagation model in simulations of multi-phase flow and heat transfer, for a dissociating methane hydrate…

Abstract

Purpose

This paper aims to present the implementation of a multi-layer radiation propagation model in simulations of multi-phase flow and heat transfer, for a dissociating methane hydrate reservoir subjected to microwave heating.

Design/methodology/approach

To model the induced heterogeneity due to dissociation of hydrates in the reservoir, a multiple homogeneous layer approach, used in food processes modelling, is suggested. The multi-layer model is incorporated in an in-house, multi-phase, multi-component hydrate dissociation simulator based on the finite volume method. The modified simulator is validated with standard experimental results in the literature and subsequently applied to a hydrate reservoir to study the effect of water content and sand dielectric nature on radiation propagation and hydrate dissociation.

Findings

The comparison of the multi-layer model with experimental results show a maximum difference in temperature estimation to be less than 2.5 K. For reservoir scale simulations, three homogeneous layers are observed to be sufficient to model the induced heterogeneity. There is a significant contribution of dielectric properties of sediments and water content of the reservoir in microwave radiation attenuation and overall hydrate dissociation. A high saturation reservoir may not always provide high gas recovery by dissociation of hydrates in the case of microwave heating.

Originality/value

The multi-layer approach to model microwave radiation propagation is introduced and tested for the first time in dissociating hydrate reservoirs. The multi-layer model provides better control over reservoir heterogeneity and interface conditions compared to existing homogeneous models.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 10000