Search results

1 – 10 of 867
Article
Publication date: 13 September 2011

Robert Bogue

The purpose of this paper is to review recent developments in the sensing of electromagnetic radiation (EMR) with wavelengths longer than those of visible light.

Abstract

Purpose

The purpose of this paper is to review recent developments in the sensing of electromagnetic radiation (EMR) with wavelengths longer than those of visible light.

Design/methodology/approach

Following a short introduction, this paper discusses recent research into the sensing of infra‐red (IR), terahertz (THz) and microwave radiation.

Findings

It is shown that novel sensors are being developed for all of these classes of EMR. Improved IR sensors are attracting strong interest from the military, novel THz sensor developments reflect the growing uses of this radiation and research into cosmology and astronomy are driving the development of highly sensitive microwave sensors.

Originality/value

The paper provides a technical review of recent research into sensing IR, THz and microwave radiations.

Article
Publication date: 29 April 2014

Behnam Seyyedi, Mohammad Edrisi, Maryam Seyyedi and Gholamreza Mahdavinia

The paper introduces a new method for single step synthesis of copper phthalocyanine green pigment using microwave irradiation to activate C−H bonds on the aromatic rings that are…

488

Abstract

Purpose

The paper introduces a new method for single step synthesis of copper phthalocyanine green pigment using microwave irradiation to activate C−H bonds on the aromatic rings that are possible by creation of chlorine radicals. The aims of this study are to investigate the possibility of high-efficiency product reaction, removing acidic wastewater, time optimization, and maximizing number of chlorine on aromatic rings.

Design/methodology/approach

The paper presents a new synthesis technique, which does not have the problems of the conventional methods. Microwave irradiation is used as a chemical reaction initiator by creation of chlorine radicals in saturated aqueous solution of sodium chloride and C−H bond activation on aromatic rings. The approach yields to a high quality of product, uniform particle size distribution, high efficiency and an environmental friendly procedure.

Findings

The paper introduces the use of suitable materials and water solvents in chemical reactions under microwave radiation at low temperatures. This shows that the microwave irradiation activates C−H bonds on aromatic rings and creates chlorine radicals at the same time, which results in relatively fast reaction of synthesis copper phthalocyanine green.

Research limitations/implications

The ammonium molybdate catalyst, which is used in this method, should be weighed carefully. The effects of transition metals on chemical reactions in the presence of microwave irradiation can also be chlorinated other unsaturated bonds.

Practical implications

The method develops a simple and practical solution to improve the synthesis of phthalocyanine green pigment.

Originality/value

The synthesis method of copper phthalocyanine green pigment is novel. CuPhcCl16 has numerous applications in industrial.

Details

Pigment & Resin Technology, vol. 43 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 May 2021

Akash K. Gupta, Rahul Yadav, Malay K. Das and Pradipta K. Panigrahi

This paper aims to present the implementation of a multi-layer radiation propagation model in simulations of multi-phase flow and heat transfer, for a dissociating methane hydrate…

Abstract

Purpose

This paper aims to present the implementation of a multi-layer radiation propagation model in simulations of multi-phase flow and heat transfer, for a dissociating methane hydrate reservoir subjected to microwave heating.

Design/methodology/approach

To model the induced heterogeneity due to dissociation of hydrates in the reservoir, a multiple homogeneous layer approach, used in food processes modelling, is suggested. The multi-layer model is incorporated in an in-house, multi-phase, multi-component hydrate dissociation simulator based on the finite volume method. The modified simulator is validated with standard experimental results in the literature and subsequently applied to a hydrate reservoir to study the effect of water content and sand dielectric nature on radiation propagation and hydrate dissociation.

Findings

The comparison of the multi-layer model with experimental results show a maximum difference in temperature estimation to be less than 2.5 K. For reservoir scale simulations, three homogeneous layers are observed to be sufficient to model the induced heterogeneity. There is a significant contribution of dielectric properties of sediments and water content of the reservoir in microwave radiation attenuation and overall hydrate dissociation. A high saturation reservoir may not always provide high gas recovery by dissociation of hydrates in the case of microwave heating.

Originality/value

The multi-layer approach to model microwave radiation propagation is introduced and tested for the first time in dissociating hydrate reservoirs. The multi-layer model provides better control over reservoir heterogeneity and interface conditions compared to existing homogeneous models.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 April 2014

Kandagaddla Venkatasubrahmanayam, Busi Ram Babu, Billa Poornaiah and Yarravarapu Srinivasa Rao

The purpose of this paper is to study the microwave interactions in polymer thick film resistors, namely, polyvinyl chloride (PVC)-graphite thick film resistors, and its…

Abstract

Purpose

The purpose of this paper is to study the microwave interactions in polymer thick film resistors, namely, polyvinyl chloride (PVC)-graphite thick film resistors, and its applications in trimming of these resistors.

Design/methodology/approach

We applied microwave radiation in the form of pulses of various pulse durations and with different powers to polymer thick film resistors and observed the variation of resistance of these resistors with microwave radiation.

Findings

The paper finds that microwave radiation can be used for trimming of polymer thick film resistors.

Research limitations/implications

The research implication of this paper is that polymer thick film resistors can be trimmed practically using this method.

Practical implications

The practical implication of this paper is that we can trim the polymer thick film resistors, namely, PVC-graphite thick film resistor, by using this method.

Originality/value

The value of the paper is in showing that microwave radiation can be used to trim downwards in the case of high-value resistors and trim upwards in the case of low-value resistors.

Details

Microelectronics International, vol. 31 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 17 August 2018

Andreas Rosin, Michael Hader, Corinna Drescher, Magdalena Suntinger, Thorsten Gerdes, Monika Willert-Porada, Udo S. Gaipl and Benjamin Frey

This paper aims to investigate in a self-designed closed loop reactor process conditions for thermal inactivation of B16 melanoma cells by microwave and conventional heating.

Abstract

Purpose

This paper aims to investigate in a self-designed closed loop reactor process conditions for thermal inactivation of B16 melanoma cells by microwave and conventional heating.

Design/methodology/approach

Besides control experiments (37°C), inactivation rate was determined in the range from 42°C to 46°C. Heating was achieved either by microwave radiation at 2.45 GHz or by warm water. To distinguish viable from dead cells, AnnexinV staining method was used and supported by field effect scanning electron microscopy (FE-SEM) imaging. Furthermore, numerical simulations were done to get a closer look into both heating devices. To investigate the thermal influence on cell inactivation and the differences between heating methods, a reaction kinetics approach was added as well.

Findings

Control experiments and heating at 42°C resulted in low inactivation rates. Inactivation rate at 44°C remained below 12% under conventional, whereas it increased to >70% under microwave heating. At 46°C, inactivation rate attained 68% under conventional heating; meanwhile, even 88% were determined under microwave heating. FE-SEM images showed a porous membrane structure under microwave heating in contrast to mostly intact conventional heated cells. Numerical simulations of both heating devices and a macroscopic Arrhenius approach could not sufficiently explain the observed differences in inactivation.

Originality/value

A combination of thermal and electrical effects owing to microwave heating results in higher inactivation rates than conventional heating achieves. Nevertheless, it was not possible to determine the exact mechanisms of inactivation under microwave radiation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 1967

With the drastically changed pattern of the retail food trade in recent years in which the retailer's role has become little more than that of a provider of shelves for…

Abstract

With the drastically changed pattern of the retail food trade in recent years in which the retailer's role has become little more than that of a provider of shelves for commodities, processed, prepared, packed and weighed by manufacturers, the defence afforded by the provisions of Section 113, Food and Drugs Act, 1955 has really come into its own. Nowadays it is undoubtedly the most commonly pleaded statutory defence. Because this pattern of trade would seem to offer scope for the use of the warranty defence (Sect. 115) in food prosecutions it is a little strange that this defence is not used more often.

Details

British Food Journal, vol. 69 no. 6
Type: Research Article
ISSN: 0007-070X

Article
Publication date: 21 February 2020

Tanmay Basak

This paper aims to investigate the thermal performance involving larger heating rate, targeted heating, heating with least non-uniformity of the spatial distribution of…

179

Abstract

Purpose

This paper aims to investigate the thermal performance involving larger heating rate, targeted heating, heating with least non-uniformity of the spatial distribution of temperature and larger penetration of heating within samples vs shapes of samples (circle, square and triangular).

Design/methodology/approach

Galerkin finite element method (GFEM) with adaptive meshing in a composite domain (free space and sample) is used in an in-house computer code. The finite element meshing is done in a composite domain involving triangle embedded within a semicircular hypothetical domain. The comparison of heating pattern is done for various shapes of samples involving identical cross-sectional area. Test cases reveal that triangular samples can induce larger penetration of heat and multiple heating fronts. A representative material (beef) with high dielectric loss corresponding to larger microwave power or heat absorption in contrast to low lossy samples is considered for the current study. The average power absorption within lossy samples has been computed using the spatial distribution and finite element basis sets. Four regimes have been selected based on various local maxima of the average power for detailed investigation. These regimes are selected based on thin, thick and intermediate limits of the sample size corresponding to the constant area of cross section, Ac involving circle or square or triangle.

Findings

The thin sample limit (Regime 1) corresponds to samples with spatially invariant power absorption, whereas power absorption attenuates from exposed to unexposed faces for thick samples (Regime 4). In Regimes 2 and 3, the average power absorption non-monotonically varies with sample size or area of cross section (Ac) and a few maxima of average power occur for fixed values of Ac involving various shapes. The spatial characteristics of power and temperature have been critically analyzed for all cross sections at each regime for lossy samples. Triangular samples are found to exhibit occurrence of multiple heating fronts for large samples (Regimes 3 and 4).

Practical implications

Length scales of samples of various shapes (circle, square and triangle) can be represented via Regimes 1-4. Regime 1 exhibits the identical heating rate for lateral and radial irradiations for any shapes of lossy samples. Regime 2 depicts that a larger heating rate with larger temperature non-uniformity can occur for square and triangular-Type 1 lossy sample during lateral irradiation. Regime 3 depicts that the penetration of heat at the core is larger for triangular samples compared to circle or square samples for lateral or radial irradiation. Regime 4 depicts that the penetration of heat is still larger for triangular samples compared to circular or square samples. Regimes 3 and 4 depict the occurrence of multiple heating fronts in triangular samples. In general, current analysis recommends the triangular samples which is also associated with larger values of temperature variation within samples.

Originality/value

GFEM with generalized mesh generation for all geometries has been implemented. The dielectric samples of any shape are surrounded by the circular shaped air medium. The unified mesh generation within the sample connected with circular air medium has been demonstrated. The algorithm also demonstrates the implementation of various complex boundary conditions in residuals. The numerical results compare the heating patterns for all geometries involving identical areas. The thermal characteristics are shown with a few generalized trends on enhanced heating or targeted heating. The circle or square or triangle (Type 1 or Type 2) can be selected based on specific heating objectives for length scales within various regimes.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 November 2016

Galal H. Elgemeie and Doaa M. Masoud

This paper aims to focus on the most popular technique nowadays, the use of microwave irradiation in organic synthesis; in a few years, most chemists will use microwave energy to…

1268

Abstract

Purpose

This paper aims to focus on the most popular technique nowadays, the use of microwave irradiation in organic synthesis; in a few years, most chemists will use microwave energy to heat chemical reactions on a laboratory scale. Also, many scientists use microwave technology in the industry. They have turned to microwave synthesis as a frontline methodology for their projects. Microwave and microwave-assisted organic synthesis (MAOS) has emerged as a new “lead” in organic synthesis.

Design/methodology/approach

Using microwave radiation for synthesis and design of fluorescent dyes is of great interest, as it decreases the time required for synthesis and the synthesized dyes can be applied to industrial scale.

Findings

The technique offers many advantages, as it is simple, clean, fast, efficient and economical for the synthesis of a large number of organic compounds. These advantages encourage many chemists to switch from the traditional heating method to microwave-assisted chemistry.

Practical implications

This review highlights applications of microwave chemistry in organic synthesis for fluorescent dyes. Fluorescents are a fairly new and very heavily used class of organics. These materials have many applications, as a penetrant liquid for crack detection, synthetic resins, plastics, printing inks, non-destructive testing and sports ball dyeing.

Originality/value

The aim value of this review is to define the scope and limitation of microwave synthesis procedures for the synthesis of novel fluorescent dyes via a simple and economic way.

Details

Pigment & Resin Technology, vol. 45 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 December 2017

Xue Zhao

This paper aims to study microwave pad dyeing process for wool fabric. Influences of various dyeing process conditions including galactomannan dosage, urea dosage, sodium…

Abstract

Purpose

This paper aims to study microwave pad dyeing process for wool fabric. Influences of various dyeing process conditions including galactomannan dosage, urea dosage, sodium bisulphite dosage, pH value, microwave irradiation power, treating time and cold batching time before microwave fixation on K/S values were analysed. The colour yield, fixation and levelness were compared between microwave fixation and cold batching fixation.

Design/methodology/approach

Colour yield (K/S values) was calculated using a Datacolor SF650 colour measuring and matching instrument (10° standard observer, CIE D65 light source Measuring; Datacolor, USA) and was used to determine the depth of the shade of dyed wool fabrics. Levelness of dyeing was evaluated also using the Datacolor SF650 colour measuring and matching instrument by measuring average deviation (S), range (P) of the maximum and the minimum for lightness (L), chroma (C) and hue (h), and balanced colour difference (ΔE) at 20 specified uniform locations on the wool fabrics. The colour difference was calculated as per the equation ΔE=(ΔL2+Δa2+Δb2)1/2 as appearing in the Experimental section. Fixation was determined using a Datacolor SF650 colour measuring and matching instrument by measuring ratio the of K/S for wool fabrics that were rinsed, washed, neutralised and then dried, and wool fabrics that were dried after fixation without washing. The pH of the padding solution was evaluated using a PHSJ-4A PH meter (Datacolor, USA). SEM analysis was done on JEOL JSM-5600LV machine (JEOL Ltd, Japan).

Findings

This study is based on application of microwave technology in the processing of silk.

Originality/value

It was found in laboratory experiments that uniform dyeing and deeper colour can be achieved throughout the microwave pad dyeing process for wool by using galactomannan. The novel process could reduce the dyeing time and the energy consumption of the traditional cold pad-batch dyeing process for wool fabric.

Details

Research Journal of Textile and Apparel, vol. 21 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 26 June 2009

Robert Bogue

The purpose of this paper is to review the industrial sensing applications of electromagnetic radiation (EMR) and is in two parts. This, the second part, considers the infrared…

Abstract

Purpose

The purpose of this paper is to review the industrial sensing applications of electromagnetic radiation (EMR) and is in two parts. This, the second part, considers the infrared (IR) to radio‐frequency (RF) spectral regions.

Design/methodology/approach

This paper discusses the sensing applications of EMR in the IR to RF region, through reference to the techniques employed, products and their applications.

Findings

This paper shows that this spectral region is used in a diversity of sensors for the measurement of physical variables, gases and chemical compounds. The most widely used phenomena are absorption and reflection. Applications are found in a wide range of industries.

Originality/value

This paper provides a detailed review of the sensing uses of EMR with wavelengths longer than visible light.

Details

Sensor Review, vol. 29 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of 867